Loading…

Injection attack detection using machine learning for smart IoT applications

Smart cities are a rapidly growing IoT application. These smart cities mainly rely on wireless sensors to connect their different components (smart devices) together. Smart cities rely on the integration of IoT and 5G technologies, and this has created a demand for a massive IoT network of connected...

Full description

Saved in:
Bibliographic Details
Published in:Physical communication 2022-06, Vol.52, p.101685, Article 101685
Main Authors: Gaber, Tarek, El-Ghamry, Amir, Hassanien, Aboul Ella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smart cities are a rapidly growing IoT application. These smart cities mainly rely on wireless sensors to connect their different components (smart devices) together. Smart cities rely on the integration of IoT and 5G technologies, and this has created a demand for a massive IoT network of connected devices. The data traffic coming from indoor wireless networks (e.g., smart homes, smart hospitals, smart factories , or smart school buildings) contributes to over 80% of the total data traffic of the current IoT network. As smart cities and their applications grow, security and privacy challenges have become a major concern for billions of IoT smart devices. One reason for this could be the oversight of handling security issues of IoT devices by their manufacturers, which enables attackers to exploit the vulnerabilities in these devices by performing different types of attacks, e.g., DDoS and injection attacks. Intrusion detection is one way to detect and mitigate the risk of such attacks. In this paper, an intrusion detection method was proposed to detect injection attacks in IoT applications (e.g. smart cities). In this method, two types of feature selection techniques (constant removal and recursive feature elimination) were used and tested by a number of machine learning classifiers (i.e., SVM, Random Forest, and Decision Tree). The T-Test was conducted to evaluate the quality of this proposed feature selection method. Using the public dataset, AWID, the evaluation results showed that the decision tree classifier can be used to detect injection attacks with an accuracy of 99% using only 8 features, which were selected using the proposed feature selection method. Also, the comparison with the most related work showed the advantages of the proposed intrusion detection method.
ISSN:1874-4907
1876-3219
DOI:10.1016/j.phycom.2022.101685