Loading…

Atractylodis rhizoma water extract attenuates fructose-induced glomerular injury in rats through anti-oxidation to inhibit TRPC6/p-CaMK4 signaling

Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidatio...

Full description

Saved in:
Bibliographic Details
Published in:Phytomedicine (Stuttgart) 2021-10, Vol.91, p.153643, Article 153643
Main Authors: Chen, Li, Yang, Jie, Zhao, Si-Jie, Li, Tu-Shuai, Jiao, Rui-Qing, Kong, Ling-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation. Based the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR. 36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model. These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerul
ISSN:0944-7113
1618-095X
DOI:10.1016/j.phymed.2021.153643