Loading…

A non-extensive statistical mechanical approach to define the equilibrium value function in the kinetics of voltage-gated ion channels

We present a model for the steady-state (or equilibrium) behaviors of the voltage-gated ion channels in cell membranes using the non-extensive or generalized statistical mechanics. The equilibrium value function in the gating kinetics of batrachotoxin-modified sodium channels from a squid optic nerv...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2007, Vol.373, p.417-424
Main Author: Erdem, Rıza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a model for the steady-state (or equilibrium) behaviors of the voltage-gated ion channels in cell membranes using the non-extensive or generalized statistical mechanics. The equilibrium value function in the gating kinetics of batrachotoxin-modified sodium channels from a squid optic nerve in planar bilayers are calculated for different values of entropic index ( q) which characterizes the degree of non-extensivity of Tsallis’ entropy and the fractal structure of the channels. It is found that in the limit q→1, the results of calculation reduce to the results described by the well-known Boltzmann statistics or the extensive physics. For the non-extensive case ( q≠1), a small deviation with respect to the Boltzmann curve which was observed in a great variety of physical systems occurred.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2006.06.005