Loading…

Thermodynamic geometry of Ising ferromagnet in an external magnetic field: A self-consistent field theory calculation

We present a complete geometrical description for the ferromagnetic Ising model in the pair approximation as introduced by Balcerzak (2003) using self-consistent field theory. A metric is defined in a two-dimensional phase space of magnetization (M) and nearest-neighbour correlation function (C). Ba...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2019-07, Vol.526, p.121173, Article 121173
Main Author: Erdem, Rıza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903
cites cdi_FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903
container_end_page
container_issue
container_start_page 121173
container_title Physica A
container_volume 526
creator Erdem, Rıza
description We present a complete geometrical description for the ferromagnetic Ising model in the pair approximation as introduced by Balcerzak (2003) using self-consistent field theory. A metric is defined in a two-dimensional phase space of magnetization (M) and nearest-neighbour correlation function (C). Based on the metric elements an expression for the thermodynamic Ricci scalar (R) is derived in terms of the lattice coordination number q. We study R as the temperature (T), magnetic field (h) and exchange energy coupling (J) are varied and show that there are T and h dependent critical properties for q=6. By direct comparison, we demonstrate that the special case q=2 provides a consistent behaviour with the already known exact formula in Janyszek and Mrugała work (1989) for the one-dimensional Ising model. •We present thermodynamic geometry of ferromagnetic Ising model.•We introduce a metric in the phase space of magnetization versus spin correlation.•We use this metric to calculate the thermodynamic curvature scalar.•Continuous/discontinuous phase transitions of the system are studied using the curvature scalar in the presence of external magnetic field.
doi_str_mv 10.1016/j.physa.2019.121173
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physa_2019_121173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437119307046</els_id><sourcerecordid>S0378437119307046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWz8Awl-NHGCxKKqeFSqxKZ7y3XGravErmwXkb_HJaxZjWbm3quZg9AjJSUltH46lqfDGFXJCG1LyigV_ArNaCN4kZv2Gs0IF02x4ILeorsYj4SQrGEzdN4eIAy-G50arMZ78AOkMGJv8Dpat8cGQvCD2jtI2DqsHIbvBMGpHk_T7DIW-u4ZL3GE3hTau2hjApemBU4H8DlSq16fe5Wsd_foxqg-wsNfnaPt2-t29VFsPt_Xq-Wm0JzwVNQ122khmkrU-ZeWcEMqqFTdLtiCdEaYjnUAhEDDBCONoKIG3XBd1TvCsnyO-BSrg48xgJGnYAcVRkmJvICTR_kLTl7AyQlcdr1MLsiXfVkIMmoLTkNnA-gkO2__9f8APsN5Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic geometry of Ising ferromagnet in an external magnetic field: A self-consistent field theory calculation</title><source>ScienceDirect Freedom Collection</source><creator>Erdem, Rıza</creator><creatorcontrib>Erdem, Rıza</creatorcontrib><description>We present a complete geometrical description for the ferromagnetic Ising model in the pair approximation as introduced by Balcerzak (2003) using self-consistent field theory. A metric is defined in a two-dimensional phase space of magnetization (M) and nearest-neighbour correlation function (C). Based on the metric elements an expression for the thermodynamic Ricci scalar (R) is derived in terms of the lattice coordination number q. We study R as the temperature (T), magnetic field (h) and exchange energy coupling (J) are varied and show that there are T and h dependent critical properties for q=6. By direct comparison, we demonstrate that the special case q=2 provides a consistent behaviour with the already known exact formula in Janyszek and Mrugała work (1989) for the one-dimensional Ising model. •We present thermodynamic geometry of ferromagnetic Ising model.•We introduce a metric in the phase space of magnetization versus spin correlation.•We use this metric to calculate the thermodynamic curvature scalar.•Continuous/discontinuous phase transitions of the system are studied using the curvature scalar in the presence of external magnetic field.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2019.121173</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ferromagnetic Ising model ; Pair approximation ; Self-consistent field theory ; Thermodynamic curvature</subject><ispartof>Physica A, 2019-07, Vol.526, p.121173, Article 121173</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903</citedby><cites>FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Erdem, Rıza</creatorcontrib><title>Thermodynamic geometry of Ising ferromagnet in an external magnetic field: A self-consistent field theory calculation</title><title>Physica A</title><description>We present a complete geometrical description for the ferromagnetic Ising model in the pair approximation as introduced by Balcerzak (2003) using self-consistent field theory. A metric is defined in a two-dimensional phase space of magnetization (M) and nearest-neighbour correlation function (C). Based on the metric elements an expression for the thermodynamic Ricci scalar (R) is derived in terms of the lattice coordination number q. We study R as the temperature (T), magnetic field (h) and exchange energy coupling (J) are varied and show that there are T and h dependent critical properties for q=6. By direct comparison, we demonstrate that the special case q=2 provides a consistent behaviour with the already known exact formula in Janyszek and Mrugała work (1989) for the one-dimensional Ising model. •We present thermodynamic geometry of ferromagnetic Ising model.•We introduce a metric in the phase space of magnetization versus spin correlation.•We use this metric to calculate the thermodynamic curvature scalar.•Continuous/discontinuous phase transitions of the system are studied using the curvature scalar in the presence of external magnetic field.</description><subject>Ferromagnetic Ising model</subject><subject>Pair approximation</subject><subject>Self-consistent field theory</subject><subject>Thermodynamic curvature</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWz8Awl-NHGCxKKqeFSqxKZ7y3XGravErmwXkb_HJaxZjWbm3quZg9AjJSUltH46lqfDGFXJCG1LyigV_ArNaCN4kZv2Gs0IF02x4ILeorsYj4SQrGEzdN4eIAy-G50arMZ78AOkMGJv8Dpat8cGQvCD2jtI2DqsHIbvBMGpHk_T7DIW-u4ZL3GE3hTau2hjApemBU4H8DlSq16fe5Wsd_foxqg-wsNfnaPt2-t29VFsPt_Xq-Wm0JzwVNQ122khmkrU-ZeWcEMqqFTdLtiCdEaYjnUAhEDDBCONoKIG3XBd1TvCsnyO-BSrg48xgJGnYAcVRkmJvICTR_kLTl7AyQlcdr1MLsiXfVkIMmoLTkNnA-gkO2__9f8APsN5Ug</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Erdem, Rıza</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190715</creationdate><title>Thermodynamic geometry of Ising ferromagnet in an external magnetic field: A self-consistent field theory calculation</title><author>Erdem, Rıza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ferromagnetic Ising model</topic><topic>Pair approximation</topic><topic>Self-consistent field theory</topic><topic>Thermodynamic curvature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdem, Rıza</creatorcontrib><collection>CrossRef</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdem, Rıza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic geometry of Ising ferromagnet in an external magnetic field: A self-consistent field theory calculation</atitle><jtitle>Physica A</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>526</volume><spage>121173</spage><pages>121173-</pages><artnum>121173</artnum><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We present a complete geometrical description for the ferromagnetic Ising model in the pair approximation as introduced by Balcerzak (2003) using self-consistent field theory. A metric is defined in a two-dimensional phase space of magnetization (M) and nearest-neighbour correlation function (C). Based on the metric elements an expression for the thermodynamic Ricci scalar (R) is derived in terms of the lattice coordination number q. We study R as the temperature (T), magnetic field (h) and exchange energy coupling (J) are varied and show that there are T and h dependent critical properties for q=6. By direct comparison, we demonstrate that the special case q=2 provides a consistent behaviour with the already known exact formula in Janyszek and Mrugała work (1989) for the one-dimensional Ising model. •We present thermodynamic geometry of ferromagnetic Ising model.•We introduce a metric in the phase space of magnetization versus spin correlation.•We use this metric to calculate the thermodynamic curvature scalar.•Continuous/discontinuous phase transitions of the system are studied using the curvature scalar in the presence of external magnetic field.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2019.121173</doi></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2019-07, Vol.526, p.121173, Article 121173
issn 0378-4371
1873-2119
language eng
recordid cdi_crossref_primary_10_1016_j_physa_2019_121173
source ScienceDirect Freedom Collection
subjects Ferromagnetic Ising model
Pair approximation
Self-consistent field theory
Thermodynamic curvature
title Thermodynamic geometry of Ising ferromagnet in an external magnetic field: A self-consistent field theory calculation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20geometry%20of%20Ising%20ferromagnet%20in%20an%20external%20magnetic%20field:%20A%20self-consistent%20field%20theory%20calculation&rft.jtitle=Physica%20A&rft.au=Erdem,%20R%C4%B1za&rft.date=2019-07-15&rft.volume=526&rft.spage=121173&rft.pages=121173-&rft.artnum=121173&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2019.121173&rft_dat=%3Celsevier_cross%3ES0378437119307046%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-662bc778576187903f05e5a694240df7fd2dee00e8272087176ec83c56b02903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true