Loading…

Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos

This paper aims to investigate critical slowing down indicators in different situations where the system’s parameters change. Variation of the bifurcation parameter is important since it allows finding bifurcation points. A system’s parameters can vary through different functions. In this paper, fiv...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2020-04, Vol.544, p.123396, Article 123396
Main Authors: Navid Moghadam, Nastaran, Nazarimehr, Fahimeh, Jafari, Sajad, Sprott, Julien C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23
cites cdi_FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23
container_end_page
container_issue
container_start_page 123396
container_title Physica A
container_volume 544
creator Navid Moghadam, Nastaran
Nazarimehr, Fahimeh
Jafari, Sajad
Sprott, Julien C.
description This paper aims to investigate critical slowing down indicators in different situations where the system’s parameters change. Variation of the bifurcation parameter is important since it allows finding bifurcation points. A system’s parameters can vary through different functions. In this paper, five cases of bifurcation parameter variation are considered in a biological model with a period-doubling route to chaos. The first case is a slow and small stepwise variation of the bifurcation parameter. The second case is a cyclic, state-dependent variation of the bifurcation parameter. In the third case, a small cyclic variation is combined with a sizeable stochastic resonance. The fourth case involves variations by a large noise, and finally, in the fifth case, significant stepwise changes in the parameter are studied. To identify the conditions under which critical slowing down occurs, an improved version of four well-known critical slowing down indicators (autocorrelation at lag-1, variance, kurtosis, and skewness) are used. The results show that when bifurcations are caused by a sudden change in a parameter or state, critical slowing down cannot be observed before the bifurcation points. However, in cases with slowly varying parameters, critical slowing down can be detected before the bifurcation points. Thus critical slowing down indicators can predict these bifurcation points. In other words, in three cases, the system approaches bifurcation points slowly. In other cases, the bifurcations occur suddenly because of a significant shift in the parameter or state. Thus critical slowing down indicators cannot predict those bifurcation points. However, critical slowing down indicators can predict the bifurcation points in other cases. •Critical transitions in different situations.•Critical slowing down in many bifurcations.•Prediction of critical slowing down.
doi_str_mv 10.1016/j.physa.2019.123396
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physa_2019_123396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437119318977</els_id><sourcerecordid>S0378437119318977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWz8Awm2x3ktWKCKl4TEAlhbjh-NqzSubJcqf09CWLOa0cw9o9FB6JaSnBJa3u3yQzdGmTNCm5wygKY8QytaV5AxSptztCJQ1RmHil6iqxh3hBBaAVuh8SMd9eiGLU6dwQcTrA97OSiDvcUquOSU7HHs_WnOaH8asBv0NEw-xKnFErfO93675MaYzB6fXOqmxXTNeZ1pf2z7mQ7-mAxOHqtO-niNLqzso7n5q2v09fT4uXnJ3t6fXzcPb5kCAikDzWtKiFK8sKBly6q25lZrxgF0QZuisSAbwqAmtqSyak1bcE4tb2xZKc1gjWC5q4KPMRgrDsHtZRgFJWK2J3bi156Y7YnF3kTdL5SZXvt2JoionJm8aBeMSkJ79y__A6NTfC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos</title><source>ScienceDirect Freedom Collection</source><creator>Navid Moghadam, Nastaran ; Nazarimehr, Fahimeh ; Jafari, Sajad ; Sprott, Julien C.</creator><creatorcontrib>Navid Moghadam, Nastaran ; Nazarimehr, Fahimeh ; Jafari, Sajad ; Sprott, Julien C.</creatorcontrib><description>This paper aims to investigate critical slowing down indicators in different situations where the system’s parameters change. Variation of the bifurcation parameter is important since it allows finding bifurcation points. A system’s parameters can vary through different functions. In this paper, five cases of bifurcation parameter variation are considered in a biological model with a period-doubling route to chaos. The first case is a slow and small stepwise variation of the bifurcation parameter. The second case is a cyclic, state-dependent variation of the bifurcation parameter. In the third case, a small cyclic variation is combined with a sizeable stochastic resonance. The fourth case involves variations by a large noise, and finally, in the fifth case, significant stepwise changes in the parameter are studied. To identify the conditions under which critical slowing down occurs, an improved version of four well-known critical slowing down indicators (autocorrelation at lag-1, variance, kurtosis, and skewness) are used. The results show that when bifurcations are caused by a sudden change in a parameter or state, critical slowing down cannot be observed before the bifurcation points. However, in cases with slowly varying parameters, critical slowing down can be detected before the bifurcation points. Thus critical slowing down indicators can predict these bifurcation points. In other words, in three cases, the system approaches bifurcation points slowly. In other cases, the bifurcations occur suddenly because of a significant shift in the parameter or state. Thus critical slowing down indicators cannot predict those bifurcation points. However, critical slowing down indicators can predict the bifurcation points in other cases. •Critical transitions in different situations.•Critical slowing down in many bifurcations.•Prediction of critical slowing down.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2019.123396</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bifurcation parameter ; Critical slowing down ; Period-doubling route to chaos</subject><ispartof>Physica A, 2020-04, Vol.544, p.123396, Article 123396</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23</citedby><cites>FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Navid Moghadam, Nastaran</creatorcontrib><creatorcontrib>Nazarimehr, Fahimeh</creatorcontrib><creatorcontrib>Jafari, Sajad</creatorcontrib><creatorcontrib>Sprott, Julien C.</creatorcontrib><title>Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos</title><title>Physica A</title><description>This paper aims to investigate critical slowing down indicators in different situations where the system’s parameters change. Variation of the bifurcation parameter is important since it allows finding bifurcation points. A system’s parameters can vary through different functions. In this paper, five cases of bifurcation parameter variation are considered in a biological model with a period-doubling route to chaos. The first case is a slow and small stepwise variation of the bifurcation parameter. The second case is a cyclic, state-dependent variation of the bifurcation parameter. In the third case, a small cyclic variation is combined with a sizeable stochastic resonance. The fourth case involves variations by a large noise, and finally, in the fifth case, significant stepwise changes in the parameter are studied. To identify the conditions under which critical slowing down occurs, an improved version of four well-known critical slowing down indicators (autocorrelation at lag-1, variance, kurtosis, and skewness) are used. The results show that when bifurcations are caused by a sudden change in a parameter or state, critical slowing down cannot be observed before the bifurcation points. However, in cases with slowly varying parameters, critical slowing down can be detected before the bifurcation points. Thus critical slowing down indicators can predict these bifurcation points. In other words, in three cases, the system approaches bifurcation points slowly. In other cases, the bifurcations occur suddenly because of a significant shift in the parameter or state. Thus critical slowing down indicators cannot predict those bifurcation points. However, critical slowing down indicators can predict the bifurcation points in other cases. •Critical transitions in different situations.•Critical slowing down in many bifurcations.•Prediction of critical slowing down.</description><subject>Bifurcation parameter</subject><subject>Critical slowing down</subject><subject>Period-doubling route to chaos</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWz8Awm2x3ktWKCKl4TEAlhbjh-NqzSubJcqf09CWLOa0cw9o9FB6JaSnBJa3u3yQzdGmTNCm5wygKY8QytaV5AxSptztCJQ1RmHil6iqxh3hBBaAVuh8SMd9eiGLU6dwQcTrA97OSiDvcUquOSU7HHs_WnOaH8asBv0NEw-xKnFErfO93675MaYzB6fXOqmxXTNeZ1pf2z7mQ7-mAxOHqtO-niNLqzso7n5q2v09fT4uXnJ3t6fXzcPb5kCAikDzWtKiFK8sKBly6q25lZrxgF0QZuisSAbwqAmtqSyak1bcE4tb2xZKc1gjWC5q4KPMRgrDsHtZRgFJWK2J3bi156Y7YnF3kTdL5SZXvt2JoionJm8aBeMSkJ79y__A6NTfC4</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Navid Moghadam, Nastaran</creator><creator>Nazarimehr, Fahimeh</creator><creator>Jafari, Sajad</creator><creator>Sprott, Julien C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200415</creationdate><title>Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos</title><author>Navid Moghadam, Nastaran ; Nazarimehr, Fahimeh ; Jafari, Sajad ; Sprott, Julien C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcation parameter</topic><topic>Critical slowing down</topic><topic>Period-doubling route to chaos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navid Moghadam, Nastaran</creatorcontrib><creatorcontrib>Nazarimehr, Fahimeh</creatorcontrib><creatorcontrib>Jafari, Sajad</creatorcontrib><creatorcontrib>Sprott, Julien C.</creatorcontrib><collection>CrossRef</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navid Moghadam, Nastaran</au><au>Nazarimehr, Fahimeh</au><au>Jafari, Sajad</au><au>Sprott, Julien C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos</atitle><jtitle>Physica A</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>544</volume><spage>123396</spage><pages>123396-</pages><artnum>123396</artnum><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>This paper aims to investigate critical slowing down indicators in different situations where the system’s parameters change. Variation of the bifurcation parameter is important since it allows finding bifurcation points. A system’s parameters can vary through different functions. In this paper, five cases of bifurcation parameter variation are considered in a biological model with a period-doubling route to chaos. The first case is a slow and small stepwise variation of the bifurcation parameter. The second case is a cyclic, state-dependent variation of the bifurcation parameter. In the third case, a small cyclic variation is combined with a sizeable stochastic resonance. The fourth case involves variations by a large noise, and finally, in the fifth case, significant stepwise changes in the parameter are studied. To identify the conditions under which critical slowing down occurs, an improved version of four well-known critical slowing down indicators (autocorrelation at lag-1, variance, kurtosis, and skewness) are used. The results show that when bifurcations are caused by a sudden change in a parameter or state, critical slowing down cannot be observed before the bifurcation points. However, in cases with slowly varying parameters, critical slowing down can be detected before the bifurcation points. Thus critical slowing down indicators can predict these bifurcation points. In other words, in three cases, the system approaches bifurcation points slowly. In other cases, the bifurcations occur suddenly because of a significant shift in the parameter or state. Thus critical slowing down indicators cannot predict those bifurcation points. However, critical slowing down indicators can predict the bifurcation points in other cases. •Critical transitions in different situations.•Critical slowing down in many bifurcations.•Prediction of critical slowing down.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2019.123396</doi></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2020-04, Vol.544, p.123396, Article 123396
issn 0378-4371
1873-2119
language eng
recordid cdi_crossref_primary_10_1016_j_physa_2019_123396
source ScienceDirect Freedom Collection
subjects Bifurcation parameter
Critical slowing down
Period-doubling route to chaos
title Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20the%20performance%20of%20critical%20slowing%20down%20indicators%20in%20a%20biological%20system%20with%20a%20period-doubling%20route%20to%20chaos&rft.jtitle=Physica%20A&rft.au=Navid%C2%A0Moghadam,%20Nastaran&rft.date=2020-04-15&rft.volume=544&rft.spage=123396&rft.pages=123396-&rft.artnum=123396&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2019.123396&rft_dat=%3Celsevier_cross%3ES0378437119318977%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-3d48100cc45f3dab27b84fdd2433d51959f3a902380f61a7beb5441f49f67cd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true