Loading…

A rigorous model for prediction of viscosity of oil-based hybrid nanofluids

Oil-based hybrid nanofluids play an important role in heat transfer in cooling systems and lubrication. Therefore, various experimental investigations are conducted to estimate their viscosity. However, such measurements can be carried out on limited types of oil-based hybrid nanofluids and often ar...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2020-10, Vol.556, p.124827, Article 124827
Main Authors: Jamei, Mehdi, Ahmadianfar, Iman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oil-based hybrid nanofluids play an important role in heat transfer in cooling systems and lubrication. Therefore, various experimental investigations are conducted to estimate their viscosity. However, such measurements can be carried out on limited types of oil-based hybrid nanofluids and often are time consuming and expensive. The main objective of this paper is to develop a rigorous data-driven method based on an advanced genetic programming (GP) called multigene genetic programming (MGGP) to predict the viscosity of Newtonian oil-based hybrid nanofluids which has not previously been used in this area. A comparative analysis was performed using the gene expression programming (GEP), multi-variate linear regression (MLR) methods and various correlations. 679 experimental data points with different nanoparticles and oil-based fluids were collected from literature to develop the Artificial Intelligent (AI) models. The new approach showed superior performance in estimating of the relative viscosity of oil-based hybrid nanofluids in comparison with all correlations methods. Furthermore, the MGGP results for the test dataset (R=0.991, RMSE=0.05, PI=0.643) were more accurate than those obtained from the GEP (R=0.975, RMSE=0.083, PI=0.696) and MLR (R=0.912, RMSE =0.153, PI=1), respectively. The sensitivity analysis was also performed demonstrating that the volume fraction (PIs=0.849, DV1=10.079%), temperature (PIs=0.463, DV2=9.966%) and nanoparticles size (PIs=0.420, DV3=6.092%) are the most significant factors in assessing relative viscosity, respectively.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2020.124827