Loading…

Consensus in complex networks with noisy agents and peer pressure

In this paper we study a discrete time consensus model on a connected graph with monotonically increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that each agent maintains a constant hidden state and a presents a dynamic output that is perturbed by random noise dr...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2022-12, Vol.608, p.128263, Article 128263
Main Authors: Griffin, Christopher, Squicciarini, Anna, Jia, Feiran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853
cites cdi_FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853
container_end_page
container_issue
container_start_page 128263
container_title Physica A
container_volume 608
creator Griffin, Christopher
Squicciarini, Anna
Jia, Feiran
description In this paper we study a discrete time consensus model on a connected graph with monotonically increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that each agent maintains a constant hidden state and a presents a dynamic output that is perturbed by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit as time goes to infinity under certain assumptions on the increasing peer-pressure term and also show that the hidden state cannot be exactly recovered even when model dynamics and outputs are known. The exact nature of the distribution is computed for a simple two vertex graph and results found are shown to generalize (empirically) to more complex graph structures. •Consensus on connected graphs with hidden states and noisy agents is formulated.•Sufficient criteria for convergence to consensus is provided.•Theoretical characterization of statistics on recovered hidden states provided.•Experimental results validate statistical analysis.
doi_str_mv 10.1016/j.physa.2022.128263
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physa_2022_128263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437122008214</els_id><sourcerecordid>S0378437122008214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwBCx-gQRfOz_OwFBV_EmVWGC2HOeaurRO5JtS-va0lJnpm86no8PYLYgcBFR3q3xY7snmUkiZg9SyUmdsArpWmQRoztlEqFpnharhkl0RrYQQUCs5YbN5HwkjbYmHyF2_Gdb4zSOOuz59Et-FccljH2jP7QfGkbiNHR8QEx8SEm0TXrMLb9eEN387Ze-PD2_z52zx-vQyny0ypwo9ZrIV2raFlyh0522HlVZYKQeVa1TZAnoAD6VG2Ta2arwvJZadLMB35cG9VFOmTr8u9UQJvRlS2Ni0NyDMsYJZmd8K5ljBnCocqPsThQe1r4DJkAsYHXYhoRtN14d_-R9Cn2fx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Consensus in complex networks with noisy agents and peer pressure</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Griffin, Christopher ; Squicciarini, Anna ; Jia, Feiran</creator><creatorcontrib>Griffin, Christopher ; Squicciarini, Anna ; Jia, Feiran</creatorcontrib><description>In this paper we study a discrete time consensus model on a connected graph with monotonically increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that each agent maintains a constant hidden state and a presents a dynamic output that is perturbed by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit as time goes to infinity under certain assumptions on the increasing peer-pressure term and also show that the hidden state cannot be exactly recovered even when model dynamics and outputs are known. The exact nature of the distribution is computed for a simple two vertex graph and results found are shown to generalize (empirically) to more complex graph structures. •Consensus on connected graphs with hidden states and noisy agents is formulated.•Sufficient criteria for convergence to consensus is provided.•Theoretical characterization of statistics on recovered hidden states provided.•Experimental results validate statistical analysis.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2022.128263</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Consensus ; Hidden state recovery ; Noise ; Peer-pressure ; Privacy</subject><ispartof>Physica A, 2022-12, Vol.608, p.128263, Article 128263</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853</citedby><cites>FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853</cites><orcidid>0000-0002-9962-9540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Griffin, Christopher</creatorcontrib><creatorcontrib>Squicciarini, Anna</creatorcontrib><creatorcontrib>Jia, Feiran</creatorcontrib><title>Consensus in complex networks with noisy agents and peer pressure</title><title>Physica A</title><description>In this paper we study a discrete time consensus model on a connected graph with monotonically increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that each agent maintains a constant hidden state and a presents a dynamic output that is perturbed by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit as time goes to infinity under certain assumptions on the increasing peer-pressure term and also show that the hidden state cannot be exactly recovered even when model dynamics and outputs are known. The exact nature of the distribution is computed for a simple two vertex graph and results found are shown to generalize (empirically) to more complex graph structures. •Consensus on connected graphs with hidden states and noisy agents is formulated.•Sufficient criteria for convergence to consensus is provided.•Theoretical characterization of statistics on recovered hidden states provided.•Experimental results validate statistical analysis.</description><subject>Consensus</subject><subject>Hidden state recovery</subject><subject>Noise</subject><subject>Peer-pressure</subject><subject>Privacy</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwBCx-gQRfOz_OwFBV_EmVWGC2HOeaurRO5JtS-va0lJnpm86no8PYLYgcBFR3q3xY7snmUkiZg9SyUmdsArpWmQRoztlEqFpnharhkl0RrYQQUCs5YbN5HwkjbYmHyF2_Gdb4zSOOuz59Et-FccljH2jP7QfGkbiNHR8QEx8SEm0TXrMLb9eEN387Ze-PD2_z52zx-vQyny0ypwo9ZrIV2raFlyh0522HlVZYKQeVa1TZAnoAD6VG2Ta2arwvJZadLMB35cG9VFOmTr8u9UQJvRlS2Ni0NyDMsYJZmd8K5ljBnCocqPsThQe1r4DJkAsYHXYhoRtN14d_-R9Cn2fx</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Griffin, Christopher</creator><creator>Squicciarini, Anna</creator><creator>Jia, Feiran</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9962-9540</orcidid></search><sort><creationdate>20221215</creationdate><title>Consensus in complex networks with noisy agents and peer pressure</title><author>Griffin, Christopher ; Squicciarini, Anna ; Jia, Feiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Consensus</topic><topic>Hidden state recovery</topic><topic>Noise</topic><topic>Peer-pressure</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffin, Christopher</creatorcontrib><creatorcontrib>Squicciarini, Anna</creatorcontrib><creatorcontrib>Jia, Feiran</creatorcontrib><collection>CrossRef</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, Christopher</au><au>Squicciarini, Anna</au><au>Jia, Feiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus in complex networks with noisy agents and peer pressure</atitle><jtitle>Physica A</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>608</volume><spage>128263</spage><pages>128263-</pages><artnum>128263</artnum><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>In this paper we study a discrete time consensus model on a connected graph with monotonically increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that each agent maintains a constant hidden state and a presents a dynamic output that is perturbed by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit as time goes to infinity under certain assumptions on the increasing peer-pressure term and also show that the hidden state cannot be exactly recovered even when model dynamics and outputs are known. The exact nature of the distribution is computed for a simple two vertex graph and results found are shown to generalize (empirically) to more complex graph structures. •Consensus on connected graphs with hidden states and noisy agents is formulated.•Sufficient criteria for convergence to consensus is provided.•Theoretical characterization of statistics on recovered hidden states provided.•Experimental results validate statistical analysis.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2022.128263</doi><orcidid>https://orcid.org/0000-0002-9962-9540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2022-12, Vol.608, p.128263, Article 128263
issn 0378-4371
1873-2119
language eng
recordid cdi_crossref_primary_10_1016_j_physa_2022_128263
source ScienceDirect Freedom Collection 2022-2024
subjects Consensus
Hidden state recovery
Noise
Peer-pressure
Privacy
title Consensus in complex networks with noisy agents and peer pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20in%20complex%20networks%20with%20noisy%20agents%20and%20peer%20pressure&rft.jtitle=Physica%20A&rft.au=Griffin,%20Christopher&rft.date=2022-12-15&rft.volume=608&rft.spage=128263&rft.pages=128263-&rft.artnum=128263&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2022.128263&rft_dat=%3Celsevier_cross%3ES0378437122008214%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-2b08ab4f2e08dfade683e63c16c935b1ef11f158e2b9a69ff52e5d241fd537853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true