Loading…
Polymer design with enhanced crystallization tendency aided by machine learning
Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2024-12, Vol.694, p.416437, Article 416437 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373 |
container_end_page | |
container_issue | |
container_start_page | 416437 |
container_title | Physica. B, Condensed matter |
container_volume | 694 |
creator | Hussain, Ejaz Tahir, Mudassir Hussain Dalal, A. Alshammari Naeem, Sumaira Islam, H. El Azab |
description | Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials. |
doi_str_mv | 10.1016/j.physb.2024.416437 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physb_2024_416437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452624007786</els_id><sourcerecordid>S0921452624007786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AiVL4Ajb-gYSM7djNggWqeElIZQFry49J4yp1KjsCha8npayZzSxGZ3TvIeQGqhIqkLe78tBN2ZasYqIUIAVXZ2RRNQwKUTN5QS5z3lXzgIIF2bwN_bTHRD3msI30K4wdxdiZ6NBTl6Y8mr4P32YMQ6QjRo_RTdQEP5_tRPfGdSEi7dGkGOL2ipy3ps94_beX5OPx4X39XLxunl7W96-FgxUfC9twC9ZiXbNGeAAmaqmapvXSCjTQWt86VSlYNcIqJaUCXwv0jEsHxnLFl4Sf_ro05Jyw1YcU9iZNGip99KB3-teDPnrQJw8zdXeicI72GTDp7AIeq4aEbtR-CP_yPwTratw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polymer design with enhanced crystallization tendency aided by machine learning</title><source>ScienceDirect Freedom Collection</source><creator>Hussain, Ejaz ; Tahir, Mudassir Hussain ; Dalal, A. Alshammari ; Naeem, Sumaira ; Islam, H. El Azab</creator><creatorcontrib>Hussain, Ejaz ; Tahir, Mudassir Hussain ; Dalal, A. Alshammari ; Naeem, Sumaira ; Islam, H. El Azab</creatorcontrib><description>Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.</description><identifier>ISSN: 0921-4526</identifier><identifier>DOI: 10.1016/j.physb.2024.416437</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Crystallization tendency ; Machine learning ; Polymers ; Synthetic accessibility</subject><ispartof>Physica. B, Condensed matter, 2024-12, Vol.694, p.416437, Article 416437</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373</cites><orcidid>0000-0003-2270-7210 ; 0000-0003-1548-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hussain, Ejaz</creatorcontrib><creatorcontrib>Tahir, Mudassir Hussain</creatorcontrib><creatorcontrib>Dalal, A. Alshammari</creatorcontrib><creatorcontrib>Naeem, Sumaira</creatorcontrib><creatorcontrib>Islam, H. El Azab</creatorcontrib><title>Polymer design with enhanced crystallization tendency aided by machine learning</title><title>Physica. B, Condensed matter</title><description>Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.</description><subject>Crystallization tendency</subject><subject>Machine learning</subject><subject>Polymers</subject><subject>Synthetic accessibility</subject><issn>0921-4526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AiVL4Ajb-gYSM7djNggWqeElIZQFry49J4yp1KjsCha8npayZzSxGZ3TvIeQGqhIqkLe78tBN2ZasYqIUIAVXZ2RRNQwKUTN5QS5z3lXzgIIF2bwN_bTHRD3msI30K4wdxdiZ6NBTl6Y8mr4P32YMQ6QjRo_RTdQEP5_tRPfGdSEi7dGkGOL2ipy3ps94_beX5OPx4X39XLxunl7W96-FgxUfC9twC9ZiXbNGeAAmaqmapvXSCjTQWt86VSlYNcIqJaUCXwv0jEsHxnLFl4Sf_ro05Jyw1YcU9iZNGip99KB3-teDPnrQJw8zdXeicI72GTDp7AIeq4aEbtR-CP_yPwTratw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hussain, Ejaz</creator><creator>Tahir, Mudassir Hussain</creator><creator>Dalal, A. Alshammari</creator><creator>Naeem, Sumaira</creator><creator>Islam, H. El Azab</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2270-7210</orcidid><orcidid>https://orcid.org/0000-0003-1548-1102</orcidid></search><sort><creationdate>20241201</creationdate><title>Polymer design with enhanced crystallization tendency aided by machine learning</title><author>Hussain, Ejaz ; Tahir, Mudassir Hussain ; Dalal, A. Alshammari ; Naeem, Sumaira ; Islam, H. El Azab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystallization tendency</topic><topic>Machine learning</topic><topic>Polymers</topic><topic>Synthetic accessibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Ejaz</creatorcontrib><creatorcontrib>Tahir, Mudassir Hussain</creatorcontrib><creatorcontrib>Dalal, A. Alshammari</creatorcontrib><creatorcontrib>Naeem, Sumaira</creatorcontrib><creatorcontrib>Islam, H. El Azab</creatorcontrib><collection>CrossRef</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Ejaz</au><au>Tahir, Mudassir Hussain</au><au>Dalal, A. Alshammari</au><au>Naeem, Sumaira</au><au>Islam, H. El Azab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer design with enhanced crystallization tendency aided by machine learning</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>694</volume><spage>416437</spage><pages>416437-</pages><artnum>416437</artnum><issn>0921-4526</issn><abstract>Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2024.416437</doi><orcidid>https://orcid.org/0000-0003-2270-7210</orcidid><orcidid>https://orcid.org/0000-0003-1548-1102</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2024-12, Vol.694, p.416437, Article 416437 |
issn | 0921-4526 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_physb_2024_416437 |
source | ScienceDirect Freedom Collection |
subjects | Crystallization tendency Machine learning Polymers Synthetic accessibility |
title | Polymer design with enhanced crystallization tendency aided by machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20design%20with%20enhanced%20crystallization%20tendency%20aided%20by%20machine%20learning&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Hussain,%20Ejaz&rft.date=2024-12-01&rft.volume=694&rft.spage=416437&rft.pages=416437-&rft.artnum=416437&rft.issn=0921-4526&rft_id=info:doi/10.1016/j.physb.2024.416437&rft_dat=%3Celsevier_cross%3ES0921452624007786%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |