Loading…

Polymer design with enhanced crystallization tendency aided by machine learning

Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2024-12, Vol.694, p.416437, Article 416437
Main Authors: Hussain, Ejaz, Tahir, Mudassir Hussain, Dalal, A. Alshammari, Naeem, Sumaira, Islam, H. El Azab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373
container_end_page
container_issue
container_start_page 416437
container_title Physica. B, Condensed matter
container_volume 694
creator Hussain, Ejaz
Tahir, Mudassir Hussain
Dalal, A. Alshammari
Naeem, Sumaira
Islam, H. El Azab
description Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.
doi_str_mv 10.1016/j.physb.2024.416437
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physb_2024_416437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452624007786</els_id><sourcerecordid>S0921452624007786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AiVL4Ajb-gYSM7djNggWqeElIZQFry49J4yp1KjsCha8npayZzSxGZ3TvIeQGqhIqkLe78tBN2ZasYqIUIAVXZ2RRNQwKUTN5QS5z3lXzgIIF2bwN_bTHRD3msI30K4wdxdiZ6NBTl6Y8mr4P32YMQ6QjRo_RTdQEP5_tRPfGdSEi7dGkGOL2ipy3ps94_beX5OPx4X39XLxunl7W96-FgxUfC9twC9ZiXbNGeAAmaqmapvXSCjTQWt86VSlYNcIqJaUCXwv0jEsHxnLFl4Sf_ro05Jyw1YcU9iZNGip99KB3-teDPnrQJw8zdXeicI72GTDp7AIeq4aEbtR-CP_yPwTratw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polymer design with enhanced crystallization tendency aided by machine learning</title><source>ScienceDirect Freedom Collection</source><creator>Hussain, Ejaz ; Tahir, Mudassir Hussain ; Dalal, A. Alshammari ; Naeem, Sumaira ; Islam, H. El Azab</creator><creatorcontrib>Hussain, Ejaz ; Tahir, Mudassir Hussain ; Dalal, A. Alshammari ; Naeem, Sumaira ; Islam, H. El Azab</creatorcontrib><description>Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.</description><identifier>ISSN: 0921-4526</identifier><identifier>DOI: 10.1016/j.physb.2024.416437</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Crystallization tendency ; Machine learning ; Polymers ; Synthetic accessibility</subject><ispartof>Physica. B, Condensed matter, 2024-12, Vol.694, p.416437, Article 416437</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373</cites><orcidid>0000-0003-2270-7210 ; 0000-0003-1548-1102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hussain, Ejaz</creatorcontrib><creatorcontrib>Tahir, Mudassir Hussain</creatorcontrib><creatorcontrib>Dalal, A. Alshammari</creatorcontrib><creatorcontrib>Naeem, Sumaira</creatorcontrib><creatorcontrib>Islam, H. El Azab</creatorcontrib><title>Polymer design with enhanced crystallization tendency aided by machine learning</title><title>Physica. B, Condensed matter</title><description>Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.</description><subject>Crystallization tendency</subject><subject>Machine learning</subject><subject>Polymers</subject><subject>Synthetic accessibility</subject><issn>0921-4526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AiVL4Ajb-gYSM7djNggWqeElIZQFry49J4yp1KjsCha8npayZzSxGZ3TvIeQGqhIqkLe78tBN2ZasYqIUIAVXZ2RRNQwKUTN5QS5z3lXzgIIF2bwN_bTHRD3msI30K4wdxdiZ6NBTl6Y8mr4P32YMQ6QjRo_RTdQEP5_tRPfGdSEi7dGkGOL2ipy3ps94_beX5OPx4X39XLxunl7W96-FgxUfC9twC9ZiXbNGeAAmaqmapvXSCjTQWt86VSlYNcIqJaUCXwv0jEsHxnLFl4Sf_ro05Jyw1YcU9iZNGip99KB3-teDPnrQJw8zdXeicI72GTDp7AIeq4aEbtR-CP_yPwTratw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hussain, Ejaz</creator><creator>Tahir, Mudassir Hussain</creator><creator>Dalal, A. Alshammari</creator><creator>Naeem, Sumaira</creator><creator>Islam, H. El Azab</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2270-7210</orcidid><orcidid>https://orcid.org/0000-0003-1548-1102</orcidid></search><sort><creationdate>20241201</creationdate><title>Polymer design with enhanced crystallization tendency aided by machine learning</title><author>Hussain, Ejaz ; Tahir, Mudassir Hussain ; Dalal, A. Alshammari ; Naeem, Sumaira ; Islam, H. El Azab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystallization tendency</topic><topic>Machine learning</topic><topic>Polymers</topic><topic>Synthetic accessibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Ejaz</creatorcontrib><creatorcontrib>Tahir, Mudassir Hussain</creatorcontrib><creatorcontrib>Dalal, A. Alshammari</creatorcontrib><creatorcontrib>Naeem, Sumaira</creatorcontrib><creatorcontrib>Islam, H. El Azab</creatorcontrib><collection>CrossRef</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Ejaz</au><au>Tahir, Mudassir Hussain</au><au>Dalal, A. Alshammari</au><au>Naeem, Sumaira</au><au>Islam, H. El Azab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer design with enhanced crystallization tendency aided by machine learning</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>694</volume><spage>416437</spage><pages>416437-</pages><artnum>416437</artnum><issn>0921-4526</issn><abstract>Designing the materials with desirable properties is very difficult task. Experimental approaches are expensive and time consuming. Machine learning (ML) guided screening is better option. In present study, different machine learning models are tried for the prediction of crystallization tendency of polymers. Hist gradient booting model is the best one. A large database of polymers is mined and easily synthesizable polymers are selected. Their crystallization tendency is predicted using fast ML model. A selected portion is analyzed using t-distributed stochastic neighbor embedding (t-SNE) method. Change in crystallization tendency on structural change is studied using structure Activity Landscape Index (SALI) analysis. On the selected polymers, clustering analysis is also performed to explore the structurally closely associated polymers with higher crystallization tendency. The synthetic accessibility assessment is also done for selected polymers. Our proposed approach is very useful for virtual screening of efficient materials.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2024.416437</doi><orcidid>https://orcid.org/0000-0003-2270-7210</orcidid><orcidid>https://orcid.org/0000-0003-1548-1102</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2024-12, Vol.694, p.416437, Article 416437
issn 0921-4526
language eng
recordid cdi_crossref_primary_10_1016_j_physb_2024_416437
source ScienceDirect Freedom Collection
subjects Crystallization tendency
Machine learning
Polymers
Synthetic accessibility
title Polymer design with enhanced crystallization tendency aided by machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20design%20with%20enhanced%20crystallization%20tendency%20aided%20by%20machine%20learning&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Hussain,%20Ejaz&rft.date=2024-12-01&rft.volume=694&rft.spage=416437&rft.pages=416437-&rft.artnum=416437&rft.issn=0921-4526&rft_id=info:doi/10.1016/j.physb.2024.416437&rft_dat=%3Celsevier_cross%3ES0921452624007786%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-b93b1bbe55294d112456799fd6b4ea1fbdfc7071894b776671d54ed236c1ab373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true