Loading…
Effects of chronic adult dietary restriction on spatial learning in the aged F344 × BN hybrid F1 rat
Abstract Dietary restriction (DR) has been shown to increase life span and reduce disease incidence across a variety of species. Recent research suggests that chronic adult DR may also alter age-related cognitive decline. The purpose of this study was twofold: (1) to examine the potential deficits i...
Saved in:
Published in: | Physiology & behavior 2008-02, Vol.93 (3), p.560-569 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Dietary restriction (DR) has been shown to increase life span and reduce disease incidence across a variety of species. Recent research suggests that chronic adult DR may also alter age-related cognitive decline. The purpose of this study was twofold: (1) to examine the potential deficits in spatial learning ability in the aged F344 × BN hybrid F1 rat with specific attention to the contributory effects of motoric impairments and (2) to determine the influence of chronic adult DR on any such impairments. The Morris water maze (MWM) task was employed with a 1.8 m diameter tank, 10 cm2 escape platform, 28 °C water, and an automated collapsing central starting platform. Spatial learning impairments in the aged rats were evident on all dependent measures during training and the probe test. Motoric function, as reflected in measures of strength and locomotion demonstrated profound age-related performance impairments that were attenuated by chronic adult DR. The present data also replicate previous reports, indicating that DR attenuates the age-related impairments of performance in the MWM as indexed by the latency measure in acquisition, but critically was dissociated from any DR effect on measures of preference and, more critically, accuracy in the probe test. Collectively, the most parsimonious interpretation of DR effects on MWM performance would appear to be the preservation of motoric, and not cognitive, function. |
---|---|
ISSN: | 0031-9384 1873-507X |
DOI: | 10.1016/j.physbeh.2007.10.017 |