Loading…

Davunetide improves spatial learning and memory in Alzheimer's disease-associated rats

Abstract Memory loss and cognition decline are the main clinical manifestations of Alzheimer's disease (AD). Amyloid β protein (Aβ) aggregated in the brain is one of the key pathological characteristics of AD and responsible for the deficits in learning and memory. It is reported that davunetid...

Full description

Saved in:
Bibliographic Details
Published in:Physiology & behavior 2017-05, Vol.174, p.67-73
Main Authors: Zhang, Jun, Wei, Shu-Yu, Yuan, Li, Kong, Lin-Lin, Zhang, Sheng-Xiao, Wang, Zhao-Jun, Wu, Mei-Na, Qi, Jin-Shun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Memory loss and cognition decline are the main clinical manifestations of Alzheimer's disease (AD). Amyloid β protein (Aβ) aggregated in the brain is one of the key pathological characteristics of AD and responsible for the deficits in learning and memory. It is reported that davunetide, an octapeptide derived from activity-dependent neuroprotective protein (ADNP), inhibited Aβ aggregation and Aβ-induced neurotoxicity. To further characterize the neuroprotective roles of davunetide and its possible mechanism, the present study investigated the effects of davunetide on Aβ1-42-induced impairments in spatial memory, synaptic plasticity and hippocampal AKT level. In Morris water maze (MWM) test, bilateral intrahippocampal injection of Aβ1-42 significantly increased escape latency and decreased target quadrant swimming time of rats, while three weeks of intranasal application of davunetide reversed the Aβ1-42-induced learning deficits and memory loss in a dose-dependent manner. In vivo field potentiation recording showed that Aβ1-42 suppressed long-term potentiation (LTP) of excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 region of rats, while davunetide effectively blocked the suppression of LTP, without affecting paired-pulse facilitation (PPF). Western blotting experiments showed a significant decrease in the level of hippocampal p-AKT (Ser473), not total AKT, in Aβ1-42 only group, which was mostly antagonized by davunetide treatment. These findings demonstrate that davunetide, probably by enhancing PI3K/AKT pathway, plays an important positive role in attenuating Aβ1-42-induced impairments in spatial memory and synaptic plasticity, suggesting that davunetide could be an effective therapeutic candidate for the prevention and treatment of neurodegenerative disease such as AD.
ISSN:0031-9384
1873-507X
DOI:10.1016/j.physbeh.2017.02.038