Loading…

MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications

Herein, the hydrothermal route has been explored to design a novel network of molybdenum sulfide (MoS2) nanorods/reduced graphene oxide (rGO) by varying wt% of MoS2 (10–30 wt%) for the highly stable and efficient electrochemical energy conversion applications involving dye sensitized solar cells (DS...

Full description

Saved in:
Bibliographic Details
Published in:Physica. E, Low-dimensional systems & nanostructures Low-dimensional systems & nanostructures, 2021-04, Vol.128, p.114589, Article 114589
Main Authors: Kumar, Sanjeev, Kaur, Navdeep, Bhullar, Viplove, Mahajan, Aman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3
cites cdi_FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3
container_end_page
container_issue
container_start_page 114589
container_title Physica. E, Low-dimensional systems & nanostructures
container_volume 128
creator Kumar, Sanjeev
Kaur, Navdeep
Bhullar, Viplove
Mahajan, Aman
description Herein, the hydrothermal route has been explored to design a novel network of molybdenum sulfide (MoS2) nanorods/reduced graphene oxide (rGO) by varying wt% of MoS2 (10–30 wt%) for the highly stable and efficient electrochemical energy conversion applications involving dye sensitized solar cells (DSSCs); and direct methanol fuel cells (DMFCs). The MoS2/rGO nanohybrids network has been systematically characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD, HRTEM, Raman and XPS investigations confirmed the uniform and homogenous anchoring of MoS2 nanorods on the rGO sheets in the MoS2/rGO nanohybrids. It has been revealed that the wt% of MoS2 in MoS2/rGO nanohybrids strongly affects the anchoring of MoS2 nanorods on rGO sheets which in turn affects their electrocatalytic behavior. The optimized MoS2/rGO nanohybrids with 20 wt% of MoS2 nanorods exhibited long term stability and highly efficient electrocatalytic behavior. DSSCs assembled with MoS2/rGO nanohybrids as CE exhibited comparable power conversion efficiency (PCE) relative to standard DSSC. The optimized anchoring of MoS2 on rGO sheets resulted in high current density as compared to rGO based electrocatalyst in MORs. Moreover, reproducibility of CV curves revealed high stability of MoS2/rGO nanohybrids under harsh electrolyte medium. •Synthesis of novel network of molybdenum sulfide nanorods (MoS2)/ reduced graphene oxide (rGO) using hydrothermal method.•Optimized MoS2/rGO nanohybrids (20 wt% of MoS2) exhibits long term stability and high electrocatalytic behavior.•MoS2/rGO nanohybrids act as effective replacement of Pt electrocatalyst in DSSCs and methanol oxidation reactions in DMFCs.
doi_str_mv 10.1016/j.physe.2020.114589
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physe_2020_114589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138694772031657X</els_id><sourcerecordid>S138694772031657X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9Aje8wFQYhmFYuDCNf0mNC3VNGLjToZnCBGrjvL20de1NyD3hnnMDH0K3lCwoofXdZjH2U4JFScp8QyveyDM0o41gBRVcnmfNmrqQlRCX6CqlDcnVyGqGhrfwUWKvfYjBJqy96UMEi_P5Nrmvox578IDDj7NwNPZTG132diFiGMDsYjA9bJ3RA87OuJ6wCX4PMbngsR7HIY92WadrdNHpIcHNX5-jr6fHz-VLsXp_fl0-rArDCNsVrWTcGA3AdQWk7bTWvKQ1E0SCLCugLYW24RasFLwDLbUlXU0tqWrOqLBsjthpr4khpQidGqPb6jgpStQBmNqoIzB1AKZOwHLq_pSC_LS9g6iSceAzBRfzL5UN7t_8L-v9eTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications</title><source>ScienceDirect Freedom Collection</source><creator>Kumar, Sanjeev ; Kaur, Navdeep ; Bhullar, Viplove ; Mahajan, Aman</creator><creatorcontrib>Kumar, Sanjeev ; Kaur, Navdeep ; Bhullar, Viplove ; Mahajan, Aman</creatorcontrib><description>Herein, the hydrothermal route has been explored to design a novel network of molybdenum sulfide (MoS2) nanorods/reduced graphene oxide (rGO) by varying wt% of MoS2 (10–30 wt%) for the highly stable and efficient electrochemical energy conversion applications involving dye sensitized solar cells (DSSCs); and direct methanol fuel cells (DMFCs). The MoS2/rGO nanohybrids network has been systematically characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD, HRTEM, Raman and XPS investigations confirmed the uniform and homogenous anchoring of MoS2 nanorods on the rGO sheets in the MoS2/rGO nanohybrids. It has been revealed that the wt% of MoS2 in MoS2/rGO nanohybrids strongly affects the anchoring of MoS2 nanorods on rGO sheets which in turn affects their electrocatalytic behavior. The optimized MoS2/rGO nanohybrids with 20 wt% of MoS2 nanorods exhibited long term stability and highly efficient electrocatalytic behavior. DSSCs assembled with MoS2/rGO nanohybrids as CE exhibited comparable power conversion efficiency (PCE) relative to standard DSSC. The optimized anchoring of MoS2 on rGO sheets resulted in high current density as compared to rGO based electrocatalyst in MORs. Moreover, reproducibility of CV curves revealed high stability of MoS2/rGO nanohybrids under harsh electrolyte medium. •Synthesis of novel network of molybdenum sulfide nanorods (MoS2)/ reduced graphene oxide (rGO) using hydrothermal method.•Optimized MoS2/rGO nanohybrids (20 wt% of MoS2) exhibits long term stability and high electrocatalytic behavior.•MoS2/rGO nanohybrids act as effective replacement of Pt electrocatalyst in DSSCs and methanol oxidation reactions in DMFCs.</description><identifier>ISSN: 1386-9477</identifier><identifier>EISSN: 1873-1759</identifier><identifier>DOI: 10.1016/j.physe.2020.114589</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Direct methanol fuel cells: methanol oxidation reactions ; Dye sensitized solar cells ; Electro-chemical properties ; Graphene ; MoS2</subject><ispartof>Physica. E, Low-dimensional systems &amp; nanostructures, 2021-04, Vol.128, p.114589, Article 114589</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3</citedby><cites>FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3</cites><orcidid>0000-0001-6736-8721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Kaur, Navdeep</creatorcontrib><creatorcontrib>Bhullar, Viplove</creatorcontrib><creatorcontrib>Mahajan, Aman</creatorcontrib><title>MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications</title><title>Physica. E, Low-dimensional systems &amp; nanostructures</title><description>Herein, the hydrothermal route has been explored to design a novel network of molybdenum sulfide (MoS2) nanorods/reduced graphene oxide (rGO) by varying wt% of MoS2 (10–30 wt%) for the highly stable and efficient electrochemical energy conversion applications involving dye sensitized solar cells (DSSCs); and direct methanol fuel cells (DMFCs). The MoS2/rGO nanohybrids network has been systematically characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD, HRTEM, Raman and XPS investigations confirmed the uniform and homogenous anchoring of MoS2 nanorods on the rGO sheets in the MoS2/rGO nanohybrids. It has been revealed that the wt% of MoS2 in MoS2/rGO nanohybrids strongly affects the anchoring of MoS2 nanorods on rGO sheets which in turn affects their electrocatalytic behavior. The optimized MoS2/rGO nanohybrids with 20 wt% of MoS2 nanorods exhibited long term stability and highly efficient electrocatalytic behavior. DSSCs assembled with MoS2/rGO nanohybrids as CE exhibited comparable power conversion efficiency (PCE) relative to standard DSSC. The optimized anchoring of MoS2 on rGO sheets resulted in high current density as compared to rGO based electrocatalyst in MORs. Moreover, reproducibility of CV curves revealed high stability of MoS2/rGO nanohybrids under harsh electrolyte medium. •Synthesis of novel network of molybdenum sulfide nanorods (MoS2)/ reduced graphene oxide (rGO) using hydrothermal method.•Optimized MoS2/rGO nanohybrids (20 wt% of MoS2) exhibits long term stability and high electrocatalytic behavior.•MoS2/rGO nanohybrids act as effective replacement of Pt electrocatalyst in DSSCs and methanol oxidation reactions in DMFCs.</description><subject>Direct methanol fuel cells: methanol oxidation reactions</subject><subject>Dye sensitized solar cells</subject><subject>Electro-chemical properties</subject><subject>Graphene</subject><subject>MoS2</subject><issn>1386-9477</issn><issn>1873-1759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9Aje8wFQYhmFYuDCNf0mNC3VNGLjToZnCBGrjvL20de1NyD3hnnMDH0K3lCwoofXdZjH2U4JFScp8QyveyDM0o41gBRVcnmfNmrqQlRCX6CqlDcnVyGqGhrfwUWKvfYjBJqy96UMEi_P5Nrmvox578IDDj7NwNPZTG132diFiGMDsYjA9bJ3RA87OuJ6wCX4PMbngsR7HIY92WadrdNHpIcHNX5-jr6fHz-VLsXp_fl0-rArDCNsVrWTcGA3AdQWk7bTWvKQ1E0SCLCugLYW24RasFLwDLbUlXU0tqWrOqLBsjthpr4khpQidGqPb6jgpStQBmNqoIzB1AKZOwHLq_pSC_LS9g6iSceAzBRfzL5UN7t_8L-v9eTw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kumar, Sanjeev</creator><creator>Kaur, Navdeep</creator><creator>Bhullar, Viplove</creator><creator>Mahajan, Aman</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6736-8721</orcidid></search><sort><creationdate>202104</creationdate><title>MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications</title><author>Kumar, Sanjeev ; Kaur, Navdeep ; Bhullar, Viplove ; Mahajan, Aman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Direct methanol fuel cells: methanol oxidation reactions</topic><topic>Dye sensitized solar cells</topic><topic>Electro-chemical properties</topic><topic>Graphene</topic><topic>MoS2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjeev</creatorcontrib><creatorcontrib>Kaur, Navdeep</creatorcontrib><creatorcontrib>Bhullar, Viplove</creatorcontrib><creatorcontrib>Mahajan, Aman</creatorcontrib><collection>CrossRef</collection><jtitle>Physica. E, Low-dimensional systems &amp; nanostructures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sanjeev</au><au>Kaur, Navdeep</au><au>Bhullar, Viplove</au><au>Mahajan, Aman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications</atitle><jtitle>Physica. E, Low-dimensional systems &amp; nanostructures</jtitle><date>2021-04</date><risdate>2021</risdate><volume>128</volume><spage>114589</spage><pages>114589-</pages><artnum>114589</artnum><issn>1386-9477</issn><eissn>1873-1759</eissn><abstract>Herein, the hydrothermal route has been explored to design a novel network of molybdenum sulfide (MoS2) nanorods/reduced graphene oxide (rGO) by varying wt% of MoS2 (10–30 wt%) for the highly stable and efficient electrochemical energy conversion applications involving dye sensitized solar cells (DSSCs); and direct methanol fuel cells (DMFCs). The MoS2/rGO nanohybrids network has been systematically characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD, HRTEM, Raman and XPS investigations confirmed the uniform and homogenous anchoring of MoS2 nanorods on the rGO sheets in the MoS2/rGO nanohybrids. It has been revealed that the wt% of MoS2 in MoS2/rGO nanohybrids strongly affects the anchoring of MoS2 nanorods on rGO sheets which in turn affects their electrocatalytic behavior. The optimized MoS2/rGO nanohybrids with 20 wt% of MoS2 nanorods exhibited long term stability and highly efficient electrocatalytic behavior. DSSCs assembled with MoS2/rGO nanohybrids as CE exhibited comparable power conversion efficiency (PCE) relative to standard DSSC. The optimized anchoring of MoS2 on rGO sheets resulted in high current density as compared to rGO based electrocatalyst in MORs. Moreover, reproducibility of CV curves revealed high stability of MoS2/rGO nanohybrids under harsh electrolyte medium. •Synthesis of novel network of molybdenum sulfide nanorods (MoS2)/ reduced graphene oxide (rGO) using hydrothermal method.•Optimized MoS2/rGO nanohybrids (20 wt% of MoS2) exhibits long term stability and high electrocatalytic behavior.•MoS2/rGO nanohybrids act as effective replacement of Pt electrocatalyst in DSSCs and methanol oxidation reactions in DMFCs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physe.2020.114589</doi><orcidid>https://orcid.org/0000-0001-6736-8721</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-9477
ispartof Physica. E, Low-dimensional systems & nanostructures, 2021-04, Vol.128, p.114589, Article 114589
issn 1386-9477
1873-1759
language eng
recordid cdi_crossref_primary_10_1016_j_physe_2020_114589
source ScienceDirect Freedom Collection
subjects Direct methanol fuel cells: methanol oxidation reactions
Dye sensitized solar cells
Electro-chemical properties
Graphene
MoS2
title MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2%20nanorods%20anchored%20reduced%20graphene%20oxide%20nanohybrids%20for%20electrochemical%20energy%20conversion%20applications&rft.jtitle=Physica.%20E,%20Low-dimensional%20systems%20&%20nanostructures&rft.au=Kumar,%20Sanjeev&rft.date=2021-04&rft.volume=128&rft.spage=114589&rft.pages=114589-&rft.artnum=114589&rft.issn=1386-9477&rft.eissn=1873-1759&rft_id=info:doi/10.1016/j.physe.2020.114589&rft_dat=%3Celsevier_cross%3ES138694772031657X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-b935ccaee5a4e0bfaaa52163709e924e1b1eb85ded975fea9ad0f61d0465317d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true