Loading…
A look at the generalized Darboux transformations for the quasinormal spectra in Schwarzschild black hole perturbation theory: Just how general should it be?
In this article we take a close look at three types of transformations usable in the Schwarzschild black hole perturbation theory: a standard (DT), a binary (BDT) and a generalized (GDT) Darboux transformations. In particular, we discuss the absolutely crucial property of isospectrality of the afore...
Saved in:
Published in: | Physics letters. A 2019-08, Vol.383 (22), p.2571-2578 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article we take a close look at three types of transformations usable in the Schwarzschild black hole perturbation theory: a standard (DT), a binary (BDT) and a generalized (GDT) Darboux transformations. In particular, we discuss the absolutely crucial property of isospectrality of the aforementioned transformations which guarantees that the quasinormal mode (QNM) spectra of potentials, related via the transformation, completely coincide. We demonstrate that, while the first two types of the Darboux transformations (DT and BDT) are indeed isospectral, the situation is wildly different for the GDT: it violates the isospectrality requirement and is therefore only valid for the solutions with just one fixed frequency. Furthermore, it is shown that although in this case the GDT does provide a relationship between two arbitrary potentials (a short-ranged and a long-ranged potentials relationship being just a trivial example), this relationship ends up being completely formal. Finally, we consider frequency-dependent potentials. A new generalization of the Darboux transformation is constructed for them and it is proven (on a concrete example) that such transformations are also not isospectral. In short, we demonstrate how a little, almost incorporeal flaw may become a major problem for an otherwise perfectly admirable goal of mathematical generalization.
•The isospectrality of the Darboux transformations (DT) is completely proven.•The isospectrality of the binary Darboux transformations is completely proven.•The generalized DT is proven to be NOT isospectral, thus making it useless for quasi-normal modes applications.•A general analog of the Darboux transformations (ADT) for frequency-dependent potentials is constructed.•It is shown that ADT would not be isospectral. |
---|---|
ISSN: | 0375-9601 1873-2429 |
DOI: | 10.1016/j.physleta.2019.05.024 |