Loading…
The Hopf equation with certain modular nonlinearities
•The Hopf equation with a non-analytic propagation velocity is considered.•Riemann waves exist only for a certain smoothness of the velocity function.•Within the modular Hopf equation, a sine wave is transformed into a Riemann wave and exists for a finite time.•Initial sine wave breaks immediately w...
Saved in:
Published in: | Physics letters. A 2024-05, Vol.507, p.129489, Article 129489 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c259t-9f13e5e73a48e9d3b05f068143036741c58e05e87345e01d159569b733d20b643 |
container_end_page | |
container_issue | |
container_start_page | 129489 |
container_title | Physics letters. A |
container_volume | 507 |
creator | Pelinovsky, Efim Talipova, Tatiana Didenkulova, Ekaterina |
description | •The Hopf equation with a non-analytic propagation velocity is considered.•Riemann waves exist only for a certain smoothness of the velocity function.•Within the modular Hopf equation, a sine wave is transformed into a Riemann wave and exists for a finite time.•Initial sine wave breaks immediately within the Schamel equation.•Sign-variable disturbance of any shape breaks immediately within the log-KdV equation.
The dynamics of waves of sign-variable shape has been studied within the framework of the Hopf equation (ut +Fux = 0) with a non-analytic propagation velocity containing the modulus of the function at the zero crossing (F ∼ |u|α). It is shown that Riemann waves exist only for a certain smoothness of the function F[u(x)] at the initial moment of time. Otherwise, the wave immediately overturns (gradient catastrophe). Popular in nonlinear physics the modular Hopf equation, the dispersionless Schamel equation, and the dispersionless logarithmic Korteweg-de Vries equation are considered as examples. |
doi_str_mv | 10.1016/j.physleta.2024.129489 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_physleta_2024_129489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960124001841</els_id><sourcerecordid>S0375960124001841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-9f13e5e73a48e9d3b05f068143036741c58e05e87345e01d159569b733d20b643</originalsourceid><addsrcrecordid>eNqFj81Kw0AURgdRsFZfQfICiXd-k9kpRa1QcFPXw2RyQ6akSZ2ZKn17U6JrV9_qfJxDyD2FggJVD7vi0J1ij8kWDJgoKNOi0hdkQauS50wwfUkWwEuZawX0mtzEuAOYSNALIrcdZuvx0Gb4ebTJj0P27VOXOQzJ-iHbj82xtyEbxqH3A9rgk8d4S65a20e8-90l-Xh53q7W-eb99W31tMkdkzrluqUcJZbcigp1w2uQLaiKCg5clYI6WSFInDSFRKANlVoqXZecNwxqJfiSqPnXhTHGgK05BL-34WQomHO82Zm_eHOON3P8BD7OIE52Xx6Dic7j4LDxAV0yzej_u_gBlNZlZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Hopf equation with certain modular nonlinearities</title><source>ScienceDirect Freedom Collection</source><creator>Pelinovsky, Efim ; Talipova, Tatiana ; Didenkulova, Ekaterina</creator><creatorcontrib>Pelinovsky, Efim ; Talipova, Tatiana ; Didenkulova, Ekaterina</creatorcontrib><description>•The Hopf equation with a non-analytic propagation velocity is considered.•Riemann waves exist only for a certain smoothness of the velocity function.•Within the modular Hopf equation, a sine wave is transformed into a Riemann wave and exists for a finite time.•Initial sine wave breaks immediately within the Schamel equation.•Sign-variable disturbance of any shape breaks immediately within the log-KdV equation.
The dynamics of waves of sign-variable shape has been studied within the framework of the Hopf equation (ut +Fux = 0) with a non-analytic propagation velocity containing the modulus of the function at the zero crossing (F ∼ |u|α). It is shown that Riemann waves exist only for a certain smoothness of the function F[u(x)] at the initial moment of time. Otherwise, the wave immediately overturns (gradient catastrophe). Popular in nonlinear physics the modular Hopf equation, the dispersionless Schamel equation, and the dispersionless logarithmic Korteweg-de Vries equation are considered as examples.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2024.129489</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hopf equation ; Korteweg-de Vries-type equation ; Nonlinear wave process in the physics ; Riemann waves ; Schamel equation ; Wave breaking</subject><ispartof>Physics letters. A, 2024-05, Vol.507, p.129489, Article 129489</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-9f13e5e73a48e9d3b05f068143036741c58e05e87345e01d159569b733d20b643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pelinovsky, Efim</creatorcontrib><creatorcontrib>Talipova, Tatiana</creatorcontrib><creatorcontrib>Didenkulova, Ekaterina</creatorcontrib><title>The Hopf equation with certain modular nonlinearities</title><title>Physics letters. A</title><description>•The Hopf equation with a non-analytic propagation velocity is considered.•Riemann waves exist only for a certain smoothness of the velocity function.•Within the modular Hopf equation, a sine wave is transformed into a Riemann wave and exists for a finite time.•Initial sine wave breaks immediately within the Schamel equation.•Sign-variable disturbance of any shape breaks immediately within the log-KdV equation.
The dynamics of waves of sign-variable shape has been studied within the framework of the Hopf equation (ut +Fux = 0) with a non-analytic propagation velocity containing the modulus of the function at the zero crossing (F ∼ |u|α). It is shown that Riemann waves exist only for a certain smoothness of the function F[u(x)] at the initial moment of time. Otherwise, the wave immediately overturns (gradient catastrophe). Popular in nonlinear physics the modular Hopf equation, the dispersionless Schamel equation, and the dispersionless logarithmic Korteweg-de Vries equation are considered as examples.</description><subject>Hopf equation</subject><subject>Korteweg-de Vries-type equation</subject><subject>Nonlinear wave process in the physics</subject><subject>Riemann waves</subject><subject>Schamel equation</subject><subject>Wave breaking</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj81Kw0AURgdRsFZfQfICiXd-k9kpRa1QcFPXw2RyQ6akSZ2ZKn17U6JrV9_qfJxDyD2FggJVD7vi0J1ij8kWDJgoKNOi0hdkQauS50wwfUkWwEuZawX0mtzEuAOYSNALIrcdZuvx0Gb4ebTJj0P27VOXOQzJ-iHbj82xtyEbxqH3A9rgk8d4S65a20e8-90l-Xh53q7W-eb99W31tMkdkzrluqUcJZbcigp1w2uQLaiKCg5clYI6WSFInDSFRKANlVoqXZecNwxqJfiSqPnXhTHGgK05BL-34WQomHO82Zm_eHOON3P8BD7OIE52Xx6Dic7j4LDxAV0yzej_u_gBlNZlZA</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Pelinovsky, Efim</creator><creator>Talipova, Tatiana</creator><creator>Didenkulova, Ekaterina</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240528</creationdate><title>The Hopf equation with certain modular nonlinearities</title><author>Pelinovsky, Efim ; Talipova, Tatiana ; Didenkulova, Ekaterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-9f13e5e73a48e9d3b05f068143036741c58e05e87345e01d159569b733d20b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hopf equation</topic><topic>Korteweg-de Vries-type equation</topic><topic>Nonlinear wave process in the physics</topic><topic>Riemann waves</topic><topic>Schamel equation</topic><topic>Wave breaking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelinovsky, Efim</creatorcontrib><creatorcontrib>Talipova, Tatiana</creatorcontrib><creatorcontrib>Didenkulova, Ekaterina</creatorcontrib><collection>CrossRef</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelinovsky, Efim</au><au>Talipova, Tatiana</au><au>Didenkulova, Ekaterina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hopf equation with certain modular nonlinearities</atitle><jtitle>Physics letters. A</jtitle><date>2024-05-28</date><risdate>2024</risdate><volume>507</volume><spage>129489</spage><pages>129489-</pages><artnum>129489</artnum><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>•The Hopf equation with a non-analytic propagation velocity is considered.•Riemann waves exist only for a certain smoothness of the velocity function.•Within the modular Hopf equation, a sine wave is transformed into a Riemann wave and exists for a finite time.•Initial sine wave breaks immediately within the Schamel equation.•Sign-variable disturbance of any shape breaks immediately within the log-KdV equation.
The dynamics of waves of sign-variable shape has been studied within the framework of the Hopf equation (ut +Fux = 0) with a non-analytic propagation velocity containing the modulus of the function at the zero crossing (F ∼ |u|α). It is shown that Riemann waves exist only for a certain smoothness of the function F[u(x)] at the initial moment of time. Otherwise, the wave immediately overturns (gradient catastrophe). Popular in nonlinear physics the modular Hopf equation, the dispersionless Schamel equation, and the dispersionless logarithmic Korteweg-de Vries equation are considered as examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2024.129489</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2024-05, Vol.507, p.129489, Article 129489 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_physleta_2024_129489 |
source | ScienceDirect Freedom Collection |
subjects | Hopf equation Korteweg-de Vries-type equation Nonlinear wave process in the physics Riemann waves Schamel equation Wave breaking |
title | The Hopf equation with certain modular nonlinearities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hopf%20equation%20with%20certain%20modular%20nonlinearities&rft.jtitle=Physics%20letters.%20A&rft.au=Pelinovsky,%20Efim&rft.date=2024-05-28&rft.volume=507&rft.spage=129489&rft.pages=129489-&rft.artnum=129489&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2024.129489&rft_dat=%3Celsevier_cross%3ES0375960124001841%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-9f13e5e73a48e9d3b05f068143036741c58e05e87345e01d159569b733d20b643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |