Loading…
Finite energy chiral sum rules in QCD
The saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental data on the difference between vector and axial-vector correlators (V–A). The sum rules exhibit poor saturation up to current energies below the tau-lepton mass. A remarkable improvement is achi...
Saved in:
Published in: | Physics letters. B 2004-02, Vol.581 (3-4), p.193-198 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental data on the difference between vector and axial-vector correlators (V–A). The sum rules exhibit poor saturation up to current energies below the tau-lepton mass. A remarkable improvement is achieved by introducing integral kernels that vanish at the upper limit of integration. The method is used to determine the value of the finite remainder of the V–A correlator, and its first derivative, at zero momentum: Π̄(0)=−4L̄10=0.0257±0.0003, and Π̄′(0)=0.065±0.007 GeV−2. The dimension d=6 and d=8 vacuum condensates in the operator product expansion are also determined: 〈O6〉=−(0.004±0.001) GeV6, and 〈O8〉=−(0.001±0.006) GeV8. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2003.11.009 |