Loading…
A Skyrme-type proposal for baryonic matter
The Skyrme model is a low-energy effective field theory for QCD, where the baryons emerge as soliton solutions. It is, however, not so easy within the standard Skyrme model to reproduce the almost exact linear growth of the nuclear masses with the baryon number (topological charge), due to the lack...
Saved in:
Published in: | Physics letters. B 2010-07, Vol.691 (2), p.105-110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Skyrme model is a low-energy effective field theory for QCD, where the baryons emerge as soliton solutions. It is, however, not so easy within the standard Skyrme model to reproduce the almost exact linear growth of the nuclear masses with the baryon number (topological charge), due to the lack of Bogomolny solutions in this model, which has also hindered analytical progress. Here we identify a submodel within the Skyrme-type low-energy effective action which does have a Bogomolny bound and exact Bogomolny solutions, and therefore, at least at the classical level, reproduces the nuclear masses by construction. Due to its high symmetry, this model qualitatively reproduces the main features of the liquid droplet model of nuclei. Finally, we discuss under which circumstances the proposed sextic term, which is of an essentially geometric and topological nature, can be expected to give a reasonable description of properties of nuclei. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2010.06.025 |