Loading…
Unlocking Co3O4–ZnO p-n heterojunction for superior acetone gas sensing detection
In this study, we synthesized pure ZnO and Co3O4–ZnO precursors with varied Co, Zn ratios via solvothermal method, and then the precursors were calcined at 400 °C for 2 h in a muffle furnace under air to obtain composites for acetone detection. The structure, morphology, elemental composition, mic...
Saved in:
Published in: | Progress in natural science 2024-10, Vol.34 (5), p.990-999 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we synthesized pure ZnO and Co3O4–ZnO precursors with varied Co, Zn ratios via solvothermal method, and then the precursors were calcined at 400 °C for 2 h in a muffle furnace under air to obtain composites for acetone detection. The structure, morphology, elemental composition, microstructure and chemical state of these materials were systematically studied by various characterization techniques. Additionally, we also evaluated the gas sensing performance of the composites-based sensors, focusing on optimal operating temperature, baseline resistance, repeatability, stability, selectivity, response/recovery time, and resistance under varying relative humidity. The findings reveal that 3 % Co3O4–ZnO-based sensor exhibit the highest response value to 100 ppm acetone (74), showing an enhancement of approximately 9.3 times compared to the pure ZnO-based sensor (8). Furthermore, the 3 % Co3O4–ZnO-based sensor demonstrate the advantages of rapid response/recovery times (15 s/2 s), outstanding selectivity, and remarkable stability. The gas sensing mechanism of the composite material is also discussed in detail, which provides insights into the observed enhancement of gas sensing performance. It provides an idea for the follow-up study on gas sensing performance of acetone sensors. |
---|---|
ISSN: | 1002-0071 |
DOI: | 10.1016/j.pnsc.2024.07.014 |