Loading…
Perspectives on Northern Gulf of Alaska salinity field structure, freshwater pathways, and controlling mechanisms
•Alongshore winds mediate Copper River plume alongshore baroclinic transport.•Northern Gulf of Alaska winds can drive coastal waters beyond the shelf break.•Kayak Island can divert coastal current waters along the continental shelf break. The biologically productive Northern Gulf of Alaska (NGA) con...
Saved in:
Published in: | Progress in oceanography 2024-12, Vol.229, p.103373, Article 103373 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Alongshore winds mediate Copper River plume alongshore baroclinic transport.•Northern Gulf of Alaska winds can drive coastal waters beyond the shelf break.•Kayak Island can divert coastal current waters along the continental shelf break.
The biologically productive Northern Gulf of Alaska (NGA) continental shelf receives large inputs of freshwater from surrounding glaciated and non-glaciated watersheds, and a better characterization of the regional salinity spatiotemporal variability is important for understanding its fate and ecological roles. We here assess synoptic to seasonal distributions of freshwater pathways of the Copper River discharge plume and the greater NGA continental shelf and slope using observations from ship-based and towed undulating conductivity-temperature-depth (CTD) instruments, satellite imagery, and satellite-tracked drifters. On the NGA continental shelf and slope we find low salinities not only nearshore but also 100–150 km from the coast (i.e. average 0–50 m salinities less than 31.9, 31.3, and 30.8 in spring, summer, and fall respectively) indicating recurring mid-shelf and shelf-break freshwater pathways. Close to the Copper River, the shelf bathymetry decouples the spreading river plume from the direct effects of seafloor-induced steering and mixing, allowing iron- and silicic acid-rich river outflow to propagate offshore within a surface-trapped plume. Self-organized mapping analysis applied to true color satellite imagery reveals common patterns of the turbid river plume. We show that the Copper River plume is sensitive to local wind forcing and exerts control over water column stratification up to ∼100 km from the river mouth. Upwelling-favorable wind stress modifies plume entrainment and density anomalies and plume width. Baroclinic transport of surface waters west of the river mouth closely follow the influence of alongshore wind stress, while baroclinic transport east of the river mouth is additionally modified by a recurring or persistent gyre. Our results provide context for considering the oceanic fate of terrestrial discharges in the Gulf of Alaska. |
---|---|
ISSN: | 0079-6611 |
DOI: | 10.1016/j.pocean.2024.103373 |