Loading…

Chemistry of oxidomolybdenum(IV) and -(VI) complexes with ONS donor ligands: Synthesis, computational evaluation and oxo-transfer reactions

A series of oxido Mo(VI)/(IV) complexes of thiosemicarbazones have been synthesized and their oxo-transfer reactivity have been studied. The complexes have been characterized by conventional methods, including X-ray crystallography, and DFT calculations. [Display omitted] A series of dioxidomolybden...

Full description

Saved in:
Bibliographic Details
Published in:Polyhedron 2018-02, Vol.141, p.322-336
Main Authors: Saswati, Roy, Satabdi, Dash, Subhashree P., Acharyya, Rama, Kaminsky, Werner, Ugone, Valeria, Garribba, Eugenio, Harris, Cragin, Lowe, Jared M., Dinda, Rupam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A series of oxido Mo(VI)/(IV) complexes of thiosemicarbazones have been synthesized and their oxo-transfer reactivity have been studied. The complexes have been characterized by conventional methods, including X-ray crystallography, and DFT calculations. [Display omitted] A series of dioxidomolybdenum(VI) complexes, [MoVIO2L1–6] (1–6) and [MoVIO2L1–6(solv)] (1a–6a) {where solv (solvent) = DMSO (1a, 3a, 5a and 6a) and H2O (2a and 4a)} have been synthesized using thiosemicarbazone ligands, H2L1–6. Furthermore, six monooxidomolybdenum(IV) complexes [MoIVOL1–6(N-N)] (7–12) {where co-ligand (N-N) = 2,2′-bipyridine (bipy) (7, 10 and 11) and 1,10-phenanthroline (phen) (8, 9 and 12)} have also been synthesized from the corresponding Mo(VI) precursors, [MoVIO2L1–6] (1–6) by oxygen atom transfer (OAT) reaction. Complexes have been characterized by conventional methods, including X-ray crystallography, and DFT (density functional theory) calculations. OAT reactivity of Mo(VI) and Mo(IV) complexes have been successfully established through the formation of OPPh3 and Me2S. These OAT products have been characterized by 31P NMR (OPPh3), UV–Vis spectroscopy and GC–MS (Me2S) and DFT simulations supported this finding through the prediction of ΔGtotsol for the reaction of oxygen atom transfer. DFT methods suggested that the oxygen atom transfer from [MoVIO2L] species to PPh3 to give [MoIVOL(bipy)] and from DMSO to [MoIVOL(bipy)] to yield [MoVIO2L] is strongly favored, whereas the formation of μ-oxido dimer [MoV2O3L2], is much less probable.
ISSN:0277-5387
DOI:10.1016/j.poly.2017.12.023