Loading…
A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites
•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical propertie...
Saved in:
Published in: | Polymer degradation and stability 2022-07, Vol.201, p.109991, Article 109991 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863 |
container_end_page | |
container_issue | |
container_start_page | 109991 |
container_title | Polymer degradation and stability |
container_volume | 201 |
creator | Pérez-Chávez, Ricardo Sánchez-Aguilar, Jöns Calderas, Fausto Maddalena, Lorenza Carosio, Federico Sanchez-Olivares, Guadalupe |
description | •A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved
Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized. |
doi_str_mv | 10.1016/j.polymdegradstab.2022.109991 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_polymdegradstab_2022_109991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391022001744</els_id><sourcerecordid>S0141391022001744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_IRePW5Psdj8OHkrxCwpe9BwmyaRN2d2sSSz035tST56cy8C8PC_DQ8g9ZwvOeP2wX0y-Pw4GtwFMTKAWggmRs67r-AWZ8bYpC1EKfklmjFe8KDvOrslNjHuWp1ryGfla0UwmF5PT0FOYpuBB72jyNO2QGjxg76cBx0S9pbaHAWnABMFAPsFo6IB6B-OJ7o-5K_hxS0dI3yHXWacwRKqc136YfHQJ4y25stBHvPvdc_L5_PSxfi027y9v69Wm0KIuU6GZbkComou2M8poboQumbZaoc0BU1XHjF62Hbem5aDKZslZBU1OVNu1dTknj-deHXyMAa2cghsgHCVn8uRP7uUff_LkT579Zf7lzGN-8uAwyKgdjhqNC6iTNN79s-kHGdqGsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</title><source>ScienceDirect Journals</source><creator>Pérez-Chávez, Ricardo ; Sánchez-Aguilar, Jöns ; Calderas, Fausto ; Maddalena, Lorenza ; Carosio, Federico ; Sanchez-Olivares, Guadalupe</creator><creatorcontrib>Pérez-Chávez, Ricardo ; Sánchez-Aguilar, Jöns ; Calderas, Fausto ; Maddalena, Lorenza ; Carosio, Federico ; Sanchez-Olivares, Guadalupe</creatorcontrib><description>•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved
Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2022.109991</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum trihydroxide ; Biocomposites ; Flame retardant ; Natural fibers ; Response surface methodology</subject><ispartof>Polymer degradation and stability, 2022-07, Vol.201, p.109991, Article 109991</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</citedby><cites>FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</cites><orcidid>0000-0003-0633-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Pérez-Chávez, Ricardo</creatorcontrib><creatorcontrib>Sánchez-Aguilar, Jöns</creatorcontrib><creatorcontrib>Calderas, Fausto</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Sanchez-Olivares, Guadalupe</creatorcontrib><title>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</title><title>Polymer degradation and stability</title><description>•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved
Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.</description><subject>Aluminum trihydroxide</subject><subject>Biocomposites</subject><subject>Flame retardant</subject><subject>Natural fibers</subject><subject>Response surface methodology</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_IRePW5Psdj8OHkrxCwpe9BwmyaRN2d2sSSz035tST56cy8C8PC_DQ8g9ZwvOeP2wX0y-Pw4GtwFMTKAWggmRs67r-AWZ8bYpC1EKfklmjFe8KDvOrslNjHuWp1ryGfla0UwmF5PT0FOYpuBB72jyNO2QGjxg76cBx0S9pbaHAWnABMFAPsFo6IB6B-OJ7o-5K_hxS0dI3yHXWacwRKqc136YfHQJ4y25stBHvPvdc_L5_PSxfi027y9v69Wm0KIuU6GZbkComou2M8poboQumbZaoc0BU1XHjF62Hbem5aDKZslZBU1OVNu1dTknj-deHXyMAa2cghsgHCVn8uRP7uUff_LkT579Zf7lzGN-8uAwyKgdjhqNC6iTNN79s-kHGdqGsg</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Pérez-Chávez, Ricardo</creator><creator>Sánchez-Aguilar, Jöns</creator><creator>Calderas, Fausto</creator><creator>Maddalena, Lorenza</creator><creator>Carosio, Federico</creator><creator>Sanchez-Olivares, Guadalupe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0633-8398</orcidid></search><sort><creationdate>202207</creationdate><title>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</title><author>Pérez-Chávez, Ricardo ; Sánchez-Aguilar, Jöns ; Calderas, Fausto ; Maddalena, Lorenza ; Carosio, Federico ; Sanchez-Olivares, Guadalupe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum trihydroxide</topic><topic>Biocomposites</topic><topic>Flame retardant</topic><topic>Natural fibers</topic><topic>Response surface methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Chávez, Ricardo</creatorcontrib><creatorcontrib>Sánchez-Aguilar, Jöns</creatorcontrib><creatorcontrib>Calderas, Fausto</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Sanchez-Olivares, Guadalupe</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Chávez, Ricardo</au><au>Sánchez-Aguilar, Jöns</au><au>Calderas, Fausto</au><au>Maddalena, Lorenza</au><au>Carosio, Federico</au><au>Sanchez-Olivares, Guadalupe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</atitle><jtitle>Polymer degradation and stability</jtitle><date>2022-07</date><risdate>2022</risdate><volume>201</volume><spage>109991</spage><pages>109991-</pages><artnum>109991</artnum><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved
Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2022.109991</doi><orcidid>https://orcid.org/0000-0003-0633-8398</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2022-07, Vol.201, p.109991, Article 109991 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_polymdegradstab_2022_109991 |
source | ScienceDirect Journals |
subjects | Aluminum trihydroxide Biocomposites Flame retardant Natural fibers Response surface methodology |
title | A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20approach%20to%20the%20development%20of%20flame%20retardant%20and%20mechanically%20strong%20natural%20fibers%20biocomposites&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=P%C3%A9rez-Ch%C3%A1vez,%20Ricardo&rft.date=2022-07&rft.volume=201&rft.spage=109991&rft.pages=109991-&rft.artnum=109991&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2022.109991&rft_dat=%3Celsevier_cross%3ES0141391022001744%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |