Loading…

A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites

•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical propertie...

Full description

Saved in:
Bibliographic Details
Published in:Polymer degradation and stability 2022-07, Vol.201, p.109991, Article 109991
Main Authors: Pérez-Chávez, Ricardo, Sánchez-Aguilar, Jöns, Calderas, Fausto, Maddalena, Lorenza, Carosio, Federico, Sanchez-Olivares, Guadalupe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863
cites cdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863
container_end_page
container_issue
container_start_page 109991
container_title Polymer degradation and stability
container_volume 201
creator Pérez-Chávez, Ricardo
Sánchez-Aguilar, Jöns
Calderas, Fausto
Maddalena, Lorenza
Carosio, Federico
Sanchez-Olivares, Guadalupe
description •A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.
doi_str_mv 10.1016/j.polymdegradstab.2022.109991
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_polymdegradstab_2022_109991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391022001744</els_id><sourcerecordid>S0141391022001744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_IRePW5Psdj8OHkrxCwpe9BwmyaRN2d2sSSz035tST56cy8C8PC_DQ8g9ZwvOeP2wX0y-Pw4GtwFMTKAWggmRs67r-AWZ8bYpC1EKfklmjFe8KDvOrslNjHuWp1ryGfla0UwmF5PT0FOYpuBB72jyNO2QGjxg76cBx0S9pbaHAWnABMFAPsFo6IB6B-OJ7o-5K_hxS0dI3yHXWacwRKqc136YfHQJ4y25stBHvPvdc_L5_PSxfi027y9v69Wm0KIuU6GZbkComou2M8poboQumbZaoc0BU1XHjF62Hbem5aDKZslZBU1OVNu1dTknj-deHXyMAa2cghsgHCVn8uRP7uUff_LkT579Zf7lzGN-8uAwyKgdjhqNC6iTNN79s-kHGdqGsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</title><source>ScienceDirect Journals</source><creator>Pérez-Chávez, Ricardo ; Sánchez-Aguilar, Jöns ; Calderas, Fausto ; Maddalena, Lorenza ; Carosio, Federico ; Sanchez-Olivares, Guadalupe</creator><creatorcontrib>Pérez-Chávez, Ricardo ; Sánchez-Aguilar, Jöns ; Calderas, Fausto ; Maddalena, Lorenza ; Carosio, Federico ; Sanchez-Olivares, Guadalupe</creatorcontrib><description>•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2022.109991</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum trihydroxide ; Biocomposites ; Flame retardant ; Natural fibers ; Response surface methodology</subject><ispartof>Polymer degradation and stability, 2022-07, Vol.201, p.109991, Article 109991</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</citedby><cites>FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</cites><orcidid>0000-0003-0633-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Pérez-Chávez, Ricardo</creatorcontrib><creatorcontrib>Sánchez-Aguilar, Jöns</creatorcontrib><creatorcontrib>Calderas, Fausto</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Sanchez-Olivares, Guadalupe</creatorcontrib><title>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</title><title>Polymer degradation and stability</title><description>•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.</description><subject>Aluminum trihydroxide</subject><subject>Biocomposites</subject><subject>Flame retardant</subject><subject>Natural fibers</subject><subject>Response surface methodology</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_IRePW5Psdj8OHkrxCwpe9BwmyaRN2d2sSSz035tST56cy8C8PC_DQ8g9ZwvOeP2wX0y-Pw4GtwFMTKAWggmRs67r-AWZ8bYpC1EKfklmjFe8KDvOrslNjHuWp1ryGfla0UwmF5PT0FOYpuBB72jyNO2QGjxg76cBx0S9pbaHAWnABMFAPsFo6IB6B-OJ7o-5K_hxS0dI3yHXWacwRKqc136YfHQJ4y25stBHvPvdc_L5_PSxfi027y9v69Wm0KIuU6GZbkComou2M8poboQumbZaoc0BU1XHjF62Hbem5aDKZslZBU1OVNu1dTknj-deHXyMAa2cghsgHCVn8uRP7uUff_LkT579Zf7lzGN-8uAwyKgdjhqNC6iTNN79s-kHGdqGsg</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Pérez-Chávez, Ricardo</creator><creator>Sánchez-Aguilar, Jöns</creator><creator>Calderas, Fausto</creator><creator>Maddalena, Lorenza</creator><creator>Carosio, Federico</creator><creator>Sanchez-Olivares, Guadalupe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0633-8398</orcidid></search><sort><creationdate>202207</creationdate><title>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</title><author>Pérez-Chávez, Ricardo ; Sánchez-Aguilar, Jöns ; Calderas, Fausto ; Maddalena, Lorenza ; Carosio, Federico ; Sanchez-Olivares, Guadalupe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum trihydroxide</topic><topic>Biocomposites</topic><topic>Flame retardant</topic><topic>Natural fibers</topic><topic>Response surface methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Chávez, Ricardo</creatorcontrib><creatorcontrib>Sánchez-Aguilar, Jöns</creatorcontrib><creatorcontrib>Calderas, Fausto</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Sanchez-Olivares, Guadalupe</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Chávez, Ricardo</au><au>Sánchez-Aguilar, Jöns</au><au>Calderas, Fausto</au><au>Maddalena, Lorenza</au><au>Carosio, Federico</au><au>Sanchez-Olivares, Guadalupe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites</atitle><jtitle>Polymer degradation and stability</jtitle><date>2022-07</date><risdate>2022</risdate><volume>201</volume><spage>109991</spage><pages>109991-</pages><artnum>109991</artnum><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>•A statistical approach is applied to the production of sustainable biocomposites•Keratin fibers from industrial waste are employed to replace aluminum hydroxide•The effects of combined compounding variables are thoroughly analyzed•The optimal balance between flame retardant and mechanical properties is achieved Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2022.109991</doi><orcidid>https://orcid.org/0000-0003-0633-8398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2022-07, Vol.201, p.109991, Article 109991
issn 0141-3910
1873-2321
language eng
recordid cdi_crossref_primary_10_1016_j_polymdegradstab_2022_109991
source ScienceDirect Journals
subjects Aluminum trihydroxide
Biocomposites
Flame retardant
Natural fibers
Response surface methodology
title A statistical approach to the development of flame retardant and mechanically strong natural fibers biocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20approach%20to%20the%20development%20of%20flame%20retardant%20and%20mechanically%20strong%20natural%20fibers%20biocomposites&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=P%C3%A9rez-Ch%C3%A1vez,%20Ricardo&rft.date=2022-07&rft.volume=201&rft.spage=109991&rft.pages=109991-&rft.artnum=109991&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2022.109991&rft_dat=%3Celsevier_cross%3ES0141391022001744%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-c0c7a2b61289dbdc1d2c30cfcbef7a20b490dc5891fd81ab375104a720bb89863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true