Loading…
Polymeric supramolecular assemblies based on multivalent ionic interactions for biomedical applications
Oppositely charged polyelectrolytes can be used to form various types of self-assembled structures directed by multivalent ionic interactions. The supramolecular architectures that result are often referred to as polyion complexes (PICs). Synthetic polyion complexes are exciting candidates for biome...
Saved in:
Published in: | Polymer (Guilford) 2014-01, Vol.55 (2), p.453-464 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oppositely charged polyelectrolytes can be used to form various types of self-assembled structures directed by multivalent ionic interactions. The supramolecular architectures that result are often referred to as polyion complexes (PICs). Synthetic polyion complexes are exciting candidates for biomedical applications. Their self-assembly capabilities give rise to hierarchical mesoscopic platforms such as micelles, membranes, and capsules through simple mixing processes. These complexes are also ideal candidates for the transport and delivery of biological agents since biomolecules, such as DNA and proteins can be easily incorporated through ionic interactions. PICs have therefore found use in drug delivery, diagnostics, gene therapy, biosensors and microreactors. In this paper, we briefly review examples of polymeric supramolecular assemblies based on multivalent ionic interactions for biomedical applications.
[Display omitted] |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2013.12.038 |