Loading…
Synthesis of Biodiesel from Palm Oil in Capillary Millichannel Reactor: Effect of Temperature, Methanol to Oil Molar Ratio, and KOH Concentration on FAME Yield
Application of microtube reactor for the continuous synthesis of biodiesel has been widely studied due to excellent performance in liquid-liquid phase reaction. In order to commercialize biodiesel production, integration of microtube reactor is highly recommended. Therefore, in this study, synthesis...
Saved in:
Published in: | Procedia chemistry 2014, Vol.9, p.165-171 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Application of microtube reactor for the continuous synthesis of biodiesel has been widely studied due to excellent performance in liquid-liquid phase reaction. In order to commercialize biodiesel production, integration of microtube reactor is highly recommended. Therefore, in this study, synthesis of biodiesel was carried out in capillary millichannel reactor with inner diameter of 1.59 mm using methanol and potassium hydroxide (KOH) as base catalyst with palm oil as a feedstock. The influences of reaction temperature, methanol to oil molar ratio, and KOH concentration on the production of fatty acid methyl ester (FAME) were examined. The highest FAME yield was achieved at 60 ˚C with 23:1 methanol to oil molar ratio and 5 wt% of KOH concentration. |
---|---|
ISSN: | 1876-6196 1876-6196 |
DOI: | 10.1016/j.proche.2014.05.020 |