Loading…

Polar curved polycyclic aromatic hydrocarbons in soot formation

In this paper, we consider the impact of polar curved polycyclic aromatic hydrocarbons (cPAH) on the process of soot formation by employing electronic structure calculations to determine the earliest onset of curvature integration and the binding energy of curved homodimers. The earliest (smallest s...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Combustion Institute 2019, Vol.37 (1), p.1117-1123
Main Authors: Martin, Jacob W., Bowal, Kimberly, Menon, Angiras, Slavchov, Radomir I., Akroyd, Jethro, Mosbach, Sebastian, Kraft, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider the impact of polar curved polycyclic aromatic hydrocarbons (cPAH) on the process of soot formation by employing electronic structure calculations to determine the earliest onset of curvature integration and the binding energy of curved homodimers. The earliest (smallest size) onset of curvature integration was found to be a six ring PAH with at least one pentagonal ring. The σ bonding in the presence of pentagons led to curvature, however, the π bonding strongly favored a planar geometry delaying the onset of curvature and therefore the induction of a flexoelectric dipole moment. The binding energies of cPAH dimers were found to be of similar magnitude to flat PAH containing one or two pentagons, with an alignment of the dipole moments vectors. For the more curved structures, steric effects reduced the dispersion interactions to significantly reduce the interaction energy compared with flat PAH. Homogeneous nucleation of cPAH at flame temperatures then appears unlikely, however, significant interactions are expected between chemi-ions and polar cPAH molecules suggesting heterogeneous nucleation should be explored.
ISSN:1540-7489
1873-2704
DOI:10.1016/j.proci.2018.05.046