Loading…
Multi-parameter diagnostics for high-resolution in-situ measurements of single coal particle combustion
To study volatile combustion processes of single coal particles non-intrusive simultaneous multi-parameter measurements were performed. The experiment was carried out in a fully premixed flat flame burner with well-defined boundary conditions. For flame visualization high-speed luminescence imaging...
Saved in:
Published in: | Proceedings of the Combustion Institute 2019, Vol.37 (3), p.2893-2900 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To study volatile combustion processes of single coal particles non-intrusive simultaneous multi-parameter measurements were performed. The experiment was carried out in a fully premixed flat flame burner with well-defined boundary conditions. For flame visualization high-speed luminescence imaging was combined with high-resolution high-speed OH-PLIF. To address particle size and shape a stereoscopic high-resolution backlight-illumination system was set up. Due to simultaneous recording of individual particle events the volatile combustion duration related to particle size, shape and velocity was measured. A comparison of luminescence imaging and OH-PLIF for flame visualization was investigated to define their application areas in coal combustion. The stereoscopic backlight-illumination setup was benchmarked to a well characterized bituminous coal. With a pixel resolution of ∼2.5 µm fine particle contours were resolved. The particle diameter and eccentricity were evaluated by an ellipse approximation. The experimental setup can be used to investigate different coal ranks and biomass in N2/O2 and CO2/O2 atmospheres in future. |
---|---|
ISSN: | 1540-7489 1873-2704 |
DOI: | 10.1016/j.proci.2018.05.116 |