Loading…

Flame development in prechamber assisted engine: High-speed PLIF

Prechamber-assisted combustion reduces emissions and improves engine performance through lean and knock limit enhancement. The spark plug ignition is replaced by multiple, high-temperature, radical-rich jets that entrain and ignite the main chamber charge, enabling the engine to operate at leaner ai...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Combustion Institute 2024, Vol.40 (1-4), p.105245, Article 105245
Main Authors: Sharma, Priybrat, Marquez, Manuel Echeverri, Luo, Xinguang, Cenker, Emre, Turner, James W.G., Magnotti, Gaetano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c183t-8d0932697d9170f13fd17b2dbf4716aa5ff0e543d4526b3f74f5785d620cb2bc3
container_end_page
container_issue 1-4
container_start_page 105245
container_title Proceedings of the Combustion Institute
container_volume 40
creator Sharma, Priybrat
Marquez, Manuel Echeverri
Luo, Xinguang
Cenker, Emre
Turner, James W.G.
Magnotti, Gaetano
description Prechamber-assisted combustion reduces emissions and improves engine performance through lean and knock limit enhancement. The spark plug ignition is replaced by multiple, high-temperature, radical-rich jets that entrain and ignite the main chamber charge, enabling the engine to operate at leaner air–fuel mixtures. Current work reports first cycle resolved planar laser-induced fluorescence (PLIF) measurements following the flame development process, starting from the mixture formation inside the prechamber to the post-combustion jets in the main chamber. The mixing and flame development inside the prechamber is visualized at 100 kHz with Acetone PLIF using an inventive engine-mounted optical prechamber (OPC) setup. Following the burning (/burned) prechamber jet interaction with the unburned main chamber, the mixture is imaged using the fuel and flame tracer (FFT) PLIF approach. The innovative 50 kHz FFT-PLIF approach is based on the fluorescence of acetone as fuel (unburned) and combustion-generated SO2 as a flame (burned) tracer with 266 nm laser excitation. The main chamber is fueled with premixed methanol seeded with 6.8 acetone and 2.6% (m/m) di-tert-butyl disulfide (DtBDS) while prechamber is injected with methane at 6 bar using solenoid and check valve assembly. The flow of the main chamber mixture into the prechamber creates a turbulent jet inside the prechamber. The inflow increases as the pressure ratio drops, generating significant recirculation inside the prechamber. Partially oxidized products remain near the top center of the prechamber even as the flame propagates through the throat. Combined flame and fuel images reveal the dynamics of the interaction layer between the prechamber jet and the main chamber fuel–air mixture.
doi_str_mv 10.1016/j.proci.2024.105245
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_proci_2024_105245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748924000555</els_id><sourcerecordid>S1540748924000555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-8d0932697d9170f13fd17b2dbf4716aa5ff0e543d4526b3f74f5785d620cb2bc3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWKtP4M2-wNbJabMrCEqxtrCgF3odssmkTekeSJaCb-_Weu3VDD98PzMfIfcUFhRo8bBfDLG3YcGAiSmRTMgLMqOl4jlTIC6nXQrIlSira3KT0h6AK-ByRp5XB9Ni5vCIh35osRuz0GVDRLszbYMxMymFNKLLsNuGDh-zddju8jTgFH3Um9UtufLmkPDub87J1-r1c7nO6_e3zfKlzi0t-ZiXDirOikq5iirwlHtHVcNc44WihTHSe0ApuBOSFQ33SnipSukKBrZhjeVzws-9NvYpRfR6iKE18VtT0CcJeq9_JeiTBH2WMFFPZwqn044Bo042YGfRhenFUbs-_Mv_ACGMZZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flame development in prechamber assisted engine: High-speed PLIF</title><source>ScienceDirect Freedom Collection</source><creator>Sharma, Priybrat ; Marquez, Manuel Echeverri ; Luo, Xinguang ; Cenker, Emre ; Turner, James W.G. ; Magnotti, Gaetano</creator><creatorcontrib>Sharma, Priybrat ; Marquez, Manuel Echeverri ; Luo, Xinguang ; Cenker, Emre ; Turner, James W.G. ; Magnotti, Gaetano</creatorcontrib><description>Prechamber-assisted combustion reduces emissions and improves engine performance through lean and knock limit enhancement. The spark plug ignition is replaced by multiple, high-temperature, radical-rich jets that entrain and ignite the main chamber charge, enabling the engine to operate at leaner air–fuel mixtures. Current work reports first cycle resolved planar laser-induced fluorescence (PLIF) measurements following the flame development process, starting from the mixture formation inside the prechamber to the post-combustion jets in the main chamber. The mixing and flame development inside the prechamber is visualized at 100 kHz with Acetone PLIF using an inventive engine-mounted optical prechamber (OPC) setup. Following the burning (/burned) prechamber jet interaction with the unburned main chamber, the mixture is imaged using the fuel and flame tracer (FFT) PLIF approach. The innovative 50 kHz FFT-PLIF approach is based on the fluorescence of acetone as fuel (unburned) and combustion-generated SO2 as a flame (burned) tracer with 266 nm laser excitation. The main chamber is fueled with premixed methanol seeded with 6.8 acetone and 2.6% (m/m) di-tert-butyl disulfide (DtBDS) while prechamber is injected with methane at 6 bar using solenoid and check valve assembly. The flow of the main chamber mixture into the prechamber creates a turbulent jet inside the prechamber. The inflow increases as the pressure ratio drops, generating significant recirculation inside the prechamber. Partially oxidized products remain near the top center of the prechamber even as the flame propagates through the throat. Combined flame and fuel images reveal the dynamics of the interaction layer between the prechamber jet and the main chamber fuel–air mixture.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2024.105245</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Burst-mode laser ; Ignition ; Prechamber assisted combustion (PCC) ; Turbulent jet ignition (TJI) ; Ultra-lean combustion</subject><ispartof>Proceedings of the Combustion Institute, 2024, Vol.40 (1-4), p.105245, Article 105245</ispartof><rights>2024 The Combustion Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-8d0932697d9170f13fd17b2dbf4716aa5ff0e543d4526b3f74f5785d620cb2bc3</cites><orcidid>0000-0002-1723-5258 ; 0000-0001-9649-3943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, Priybrat</creatorcontrib><creatorcontrib>Marquez, Manuel Echeverri</creatorcontrib><creatorcontrib>Luo, Xinguang</creatorcontrib><creatorcontrib>Cenker, Emre</creatorcontrib><creatorcontrib>Turner, James W.G.</creatorcontrib><creatorcontrib>Magnotti, Gaetano</creatorcontrib><title>Flame development in prechamber assisted engine: High-speed PLIF</title><title>Proceedings of the Combustion Institute</title><description>Prechamber-assisted combustion reduces emissions and improves engine performance through lean and knock limit enhancement. The spark plug ignition is replaced by multiple, high-temperature, radical-rich jets that entrain and ignite the main chamber charge, enabling the engine to operate at leaner air–fuel mixtures. Current work reports first cycle resolved planar laser-induced fluorescence (PLIF) measurements following the flame development process, starting from the mixture formation inside the prechamber to the post-combustion jets in the main chamber. The mixing and flame development inside the prechamber is visualized at 100 kHz with Acetone PLIF using an inventive engine-mounted optical prechamber (OPC) setup. Following the burning (/burned) prechamber jet interaction with the unburned main chamber, the mixture is imaged using the fuel and flame tracer (FFT) PLIF approach. The innovative 50 kHz FFT-PLIF approach is based on the fluorescence of acetone as fuel (unburned) and combustion-generated SO2 as a flame (burned) tracer with 266 nm laser excitation. The main chamber is fueled with premixed methanol seeded with 6.8 acetone and 2.6% (m/m) di-tert-butyl disulfide (DtBDS) while prechamber is injected with methane at 6 bar using solenoid and check valve assembly. The flow of the main chamber mixture into the prechamber creates a turbulent jet inside the prechamber. The inflow increases as the pressure ratio drops, generating significant recirculation inside the prechamber. Partially oxidized products remain near the top center of the prechamber even as the flame propagates through the throat. Combined flame and fuel images reveal the dynamics of the interaction layer between the prechamber jet and the main chamber fuel–air mixture.</description><subject>Burst-mode laser</subject><subject>Ignition</subject><subject>Prechamber assisted combustion (PCC)</subject><subject>Turbulent jet ignition (TJI)</subject><subject>Ultra-lean combustion</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWKtP4M2-wNbJabMrCEqxtrCgF3odssmkTekeSJaCb-_Weu3VDD98PzMfIfcUFhRo8bBfDLG3YcGAiSmRTMgLMqOl4jlTIC6nXQrIlSira3KT0h6AK-ByRp5XB9Ni5vCIh35osRuz0GVDRLszbYMxMymFNKLLsNuGDh-zddju8jTgFH3Um9UtufLmkPDub87J1-r1c7nO6_e3zfKlzi0t-ZiXDirOikq5iirwlHtHVcNc44WihTHSe0ApuBOSFQ33SnipSukKBrZhjeVzws-9NvYpRfR6iKE18VtT0CcJeq9_JeiTBH2WMFFPZwqn044Bo042YGfRhenFUbs-_Mv_ACGMZZ4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sharma, Priybrat</creator><creator>Marquez, Manuel Echeverri</creator><creator>Luo, Xinguang</creator><creator>Cenker, Emre</creator><creator>Turner, James W.G.</creator><creator>Magnotti, Gaetano</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1723-5258</orcidid><orcidid>https://orcid.org/0000-0001-9649-3943</orcidid></search><sort><creationdate>2024</creationdate><title>Flame development in prechamber assisted engine: High-speed PLIF</title><author>Sharma, Priybrat ; Marquez, Manuel Echeverri ; Luo, Xinguang ; Cenker, Emre ; Turner, James W.G. ; Magnotti, Gaetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-8d0932697d9170f13fd17b2dbf4716aa5ff0e543d4526b3f74f5785d620cb2bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Burst-mode laser</topic><topic>Ignition</topic><topic>Prechamber assisted combustion (PCC)</topic><topic>Turbulent jet ignition (TJI)</topic><topic>Ultra-lean combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Priybrat</creatorcontrib><creatorcontrib>Marquez, Manuel Echeverri</creatorcontrib><creatorcontrib>Luo, Xinguang</creatorcontrib><creatorcontrib>Cenker, Emre</creatorcontrib><creatorcontrib>Turner, James W.G.</creatorcontrib><creatorcontrib>Magnotti, Gaetano</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Priybrat</au><au>Marquez, Manuel Echeverri</au><au>Luo, Xinguang</au><au>Cenker, Emre</au><au>Turner, James W.G.</au><au>Magnotti, Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame development in prechamber assisted engine: High-speed PLIF</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2024</date><risdate>2024</risdate><volume>40</volume><issue>1-4</issue><spage>105245</spage><pages>105245-</pages><artnum>105245</artnum><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>Prechamber-assisted combustion reduces emissions and improves engine performance through lean and knock limit enhancement. The spark plug ignition is replaced by multiple, high-temperature, radical-rich jets that entrain and ignite the main chamber charge, enabling the engine to operate at leaner air–fuel mixtures. Current work reports first cycle resolved planar laser-induced fluorescence (PLIF) measurements following the flame development process, starting from the mixture formation inside the prechamber to the post-combustion jets in the main chamber. The mixing and flame development inside the prechamber is visualized at 100 kHz with Acetone PLIF using an inventive engine-mounted optical prechamber (OPC) setup. Following the burning (/burned) prechamber jet interaction with the unburned main chamber, the mixture is imaged using the fuel and flame tracer (FFT) PLIF approach. The innovative 50 kHz FFT-PLIF approach is based on the fluorescence of acetone as fuel (unburned) and combustion-generated SO2 as a flame (burned) tracer with 266 nm laser excitation. The main chamber is fueled with premixed methanol seeded with 6.8 acetone and 2.6% (m/m) di-tert-butyl disulfide (DtBDS) while prechamber is injected with methane at 6 bar using solenoid and check valve assembly. The flow of the main chamber mixture into the prechamber creates a turbulent jet inside the prechamber. The inflow increases as the pressure ratio drops, generating significant recirculation inside the prechamber. Partially oxidized products remain near the top center of the prechamber even as the flame propagates through the throat. Combined flame and fuel images reveal the dynamics of the interaction layer between the prechamber jet and the main chamber fuel–air mixture.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2024.105245</doi><orcidid>https://orcid.org/0000-0002-1723-5258</orcidid><orcidid>https://orcid.org/0000-0001-9649-3943</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2024, Vol.40 (1-4), p.105245, Article 105245
issn 1540-7489
1873-2704
language eng
recordid cdi_crossref_primary_10_1016_j_proci_2024_105245
source ScienceDirect Freedom Collection
subjects Burst-mode laser
Ignition
Prechamber assisted combustion (PCC)
Turbulent jet ignition (TJI)
Ultra-lean combustion
title Flame development in prechamber assisted engine: High-speed PLIF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20development%20in%20prechamber%20assisted%20engine:%20High-speed%20PLIF&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Sharma,%20Priybrat&rft.date=2024&rft.volume=40&rft.issue=1-4&rft.spage=105245&rft.pages=105245-&rft.artnum=105245&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2024.105245&rft_dat=%3Celsevier_cross%3ES1540748924000555%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-8d0932697d9170f13fd17b2dbf4716aa5ff0e543d4526b3f74f5785d620cb2bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true