Loading…
Improving Performance of Turn-milling by Controlling Forces and Thermally Induced Tool-center Point (TCP) Displacement
Improving performance during fine turn-milling operations including accuracy and productivity requires controlling of the cutting forces and the thermally induced displacement of the cutting edge. The objective of this investigation is to determine the thermally induced displacement of TCP during tu...
Saved in:
Published in: | Procedia CIRP 2016, Vol.40, p.481-485 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Improving performance during fine turn-milling operations including accuracy and productivity requires controlling of the cutting forces and the thermally induced displacement of the cutting edge. The objective of this investigation is to determine the thermally induced displacement of TCP during turn-milling and to reduce this displacement by using pressurized cooled air. The forces and tool elongation simulated by FEM are compared to measured values. It was shown that the amount of tool elongation could be 40% of the depth of cut in fine turn-milling, and it is possible to predict the tool elongation by FEM. Furthermore, cooled air can reduce the tool elongation by 65%. |
---|---|
ISSN: | 2212-8271 2212-8271 |
DOI: | 10.1016/j.procir.2016.01.107 |