Loading…
Possibilities of robot application for glass mechanical frosting by an abrasive composite brush
This contribution presents the research results of flat glass mechanical frosting with the use of brushing by abrasive composite filaments containing diamond particles. The technology has a great potential to replace the currently used mechanical frosting technologies, such as sandblasting. It also...
Saved in:
Published in: | Procedia CIRP 2018, Vol.77, p.134-138 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This contribution presents the research results of flat glass mechanical frosting with the use of brushing by abrasive composite filaments containing diamond particles. The technology has a great potential to replace the currently used mechanical frosting technologies, such as sandblasting. It also offers an environmental friendly alternative to common chemical frosting, which is normally connected with considerable volumes of fluoride. The technology allows the creation of all-over or patterned frosted surfaces with different structure depths and a noticeable texture. This unique and ecological technology has a high application potential in the fields of interior glass, domestic architecture, furniture glass and lighting. An experimental stand created by a robotized workplace with an angular industrial robot is presented in detail in the article. The high flexibility of the workplace provided by a combination of the motion possibilities and trajectory programming CAM software modules is summarized. Emphasis is placed on a conceptual effector solution and the properties of the rotary effector tool used. The design of the frosting tool is supported by the quasi-static theory of frosting, which supports the limited character of the start of the effective frosting process. The precise and targeted setting of the technological conditions of the glass frosting process was analysed as well as their influence on the quality of the mechanically frosted glass surface based on surface structure, and mechanical and optical properties. The article also summarizes the influence of the main tool processing parameters. Finally, possibilities for transferring the technology to other industrial processing fields are suggested. |
---|---|
ISSN: | 2212-8271 2212-8271 |
DOI: | 10.1016/j.procir.2018.08.251 |