Loading…
Physics-Informed Uncertainty Quantification in Modeling of Machining-Induced Residual Stress
Machining processes involve various sources of uncertainty which lead to inaccurate interpretation of results in the surface integrity of machined products. This work presents a physics-informed, data-driven modeling framework for achieving comprehensive uncertainty quantification (UQ) of the impact...
Saved in:
Published in: | Procedia CIRP 2023, Vol.117, p.139-144 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machining processes involve various sources of uncertainty which lead to inaccurate interpretation of results in the surface integrity of machined products. This work presents a physics-informed, data-driven modeling framework for achieving comprehensive uncertainty quantification (UQ) of the impact of process and material variability on machining-induced residual stress (RS). Uncertainty due to the variation in bulk material properties and model input parameters in machining are considered. Preliminary results showed that variations in calibration parameters have a substantial effect on modeling RS, while the variation in material properties has a smaller effect. Further research directions for UQ in machining are also outlined. |
---|---|
ISSN: | 2212-8271 2212-8271 |
DOI: | 10.1016/j.procir.2023.03.025 |