Loading…
Optimization of Multi-Phase Compressible Lattice Boltzmann Codes on Massively Parallel Multi-Core Systems
We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of th...
Saved in:
Published in: | Procedia computer science 2011, Vol.4, p.994-1003 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of the available parallelism, and derive appropriate solutions. We obtain a sustained performance for this ready-for-physics code that is a large fraction of peak. Our results can be easily applied to most present (or planned) HPC architectures, based on latest generation multi-core Intel processor architectures. |
---|---|
ISSN: | 1877-0509 1877-0509 |
DOI: | 10.1016/j.procs.2011.04.105 |