Loading…

Feasibility Study on HYSOL CSP

Concentrating Solar Power (CSP) plants utilize thermal conversion of direct solar irradiation. A trough or tower configuration focuses solar radiation and heats up oil or molten salt that subsequently in high temperature heat exchangers generate steam for power generation. High temperature molten sa...

Full description

Saved in:
Bibliographic Details
Main Authors: Nielsen, Lars Henrik, Skytte, Klaus, Cabrera Pérez, Cristian Hernán, García, Eduardo Cerrajero, Barrio, Diego Lopez, Cuadrado, Lucía González, Rocha, Alberto Rodríguez
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Concentrating Solar Power (CSP) plants utilize thermal conversion of direct solar irradiation. A trough or tower configuration focuses solar radiation and heats up oil or molten salt that subsequently in high temperature heat exchangers generate steam for power generation. High temperature molten salt can be stored and the stored heat can thus increase the load factor and the usability for a CSP plant, e.g. to cover evening peak demand. In the HYSOL concept (HYbrid SOLar) such configuration is extended further to include a gas turbine fuelled by upgraded biogas or natural gas. The optimised integrated HYSOL concept, therefore, becomes a fully dispatchable (offering firm power) and fully renewable energy source (RES) based power supply alternative, offering CO2-free electricity in regions with sufficient solar resources. The economic feasibility of HYSOL configurations is addressed in this paper. The CO2 free HYSOL alternative is discussed relative to conventional reference firm power generation technologies. In particular the HYSOL performance relative to new power plants based on natural gas (NG) such as open cycle or combined cycle gas turbines (OCGT or CCGT) are in focus. The feasibility of renewable based HYSOL power plant configurations attuned to specific electricity consumption patterns in selected regions with promising solar energy potentials are discussed
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2016.04.238