Loading…
Belief Measure of Expertise for Experts Detection in Question Answering Communities: case study Stack Overflow
Online Question Answering Communities (Q& A C) provide a valuable amount of information in several topics. The major challenge with Q& A C is the detection of the authoritative users. When manipulating real world data, we have to deal with imperfections and uncertainty that can occur. In thi...
Saved in:
Published in: | Procedia computer science 2017, Vol.112, p.622-631 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Online Question Answering Communities (Q& A C) provide a valuable amount of information in several topics. The major challenge with Q& A C is the detection of the authoritative users. When manipulating real world data, we have to deal with imperfections and uncertainty that can occur. In this paper, we propose a belief measure of expertise allowing us to detect users with the highest degree of expertise based on their attributes. Experiments on a dataset from a large online Q&A Community prove that the proposed model can be used to improve the identification of most expert users. |
---|---|
ISSN: | 1877-0509 1877-0509 |
DOI: | 10.1016/j.procs.2017.08.099 |