Loading…
Machine Learning Algorithms for Stratigraphy Classification on Uranium Deposits
Machine learning today becomes more and more effective instrument to solve many particular problems, where there are difficulties to apply well known and described math model. In other words - it is a great tool to describe non-linear phenomena. We tried to use this technique to improve existing pro...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning today becomes more and more effective instrument to solve many particular problems, where there are difficulties to apply well known and described math model. In other words - it is a great tool to describe non-linear phenomena. We tried to use this technique to improve existing process of stratigraphy, and reduce costs on site by applying computer leaded predictions on the basis of existing on-field collected data. Article describes usage of machine learning algorithms for stratigraphy boundaries classification based on geophysics logging data for uranium deposit in Kazakhstan. Correct marking of stratigraphy from geophysics logging data is complex non-linear task. To solve this task we applied several algorithms of machine learning: random forest, logistic regression, gradient boosting, k nearest neighbour and XGBoost. |
---|---|
ISSN: | 1877-0509 1877-0509 |
DOI: | 10.1016/j.procs.2019.02.010 |