Loading…
A New Approach for Calculating Semantic Similarity between Words Using WordNet and Set Theory
Calculating semantic similarity between words is a challenging task of a lot of domains such as Natural language processing (NLP), information retrieval and plagiarism detection. WordNet is a lexical dictionary conceptually organized, where each concept has several characteristics: Synsets and Gloss...
Saved in:
Published in: | Procedia computer science 2019, Vol.151, p.1261-1265 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Calculating semantic similarity between words is a challenging task of a lot of domains such as Natural language processing (NLP), information retrieval and plagiarism detection. WordNet is a lexical dictionary conceptually organized, where each concept has several characteristics: Synsets and Glosses. Synset represent sets of synonyms of a given word and Glosses are a short description. In this paper, we propose a new approach for calculating semantic similarity between two concepts. The proposed method is based on set theory’s concepts and WordNet properties, by calculating the relatedness between the synsets’ and glosses’s of the two concepts. |
---|---|
ISSN: | 1877-0509 1877-0509 |
DOI: | 10.1016/j.procs.2019.04.182 |