Loading…
Prediction and Optimization of Tool Life in Micromilling AISI D2 (∼62 HRC) Hardened Steel
This paper presents a study for the development the first and second order tool life models of micromilling hardened tool steel AISI D2 62 HRC. The models were developed in terms of cutting speed, feed per tooth and depth of cut, using response surface methodology. Central composite design (CCD) was...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a study for the development the first and second order tool life models of micromilling hardened tool steel AISI D2 62 HRC. The models were developed in terms of cutting speed, feed per tooth and depth of cut, using response surface methodology. Central composite design (CCD) was employed in developing the tool life model in relation to independent variables as primary cutting parameters. All of the cutting tests were performed within specified ranges of parameters using ø0.5mm TiAlN microtools under dry condition. Tool life and dual-response contours of metal removal rate have been generated from these model equations. Tool life equation shows that cutting speed is the main influencing factor on the tool life, followed by feed per tooth and depth of cut. The results were presented in terms of mean values and confidence levels. The adequacy of the predictive model was verified using analysis of variance (ANOVA) at 5% significant level and found to be adequate. |
---|---|
ISSN: | 1877-7058 1877-7058 |
DOI: | 10.1016/j.proeng.2012.07.367 |