Loading…
Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization
Polymer/filler composites have been widely used in various areas. One of the keys to achieve the high performance of these composites is good interfacial interaction between polymer matrix and filler. As a relatively new approach, the possibility to enhance polymer/filler interfacial interaction via...
Saved in:
Published in: | Progress in polymer science 2012-10, Vol.37 (10), p.1425-1455 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer/filler composites have been widely used in various areas. One of the keys to achieve the high performance of these composites is good interfacial interaction between polymer matrix and filler. As a relatively new approach, the possibility to enhance polymer/filler interfacial interaction via crystallization of polymer on the surface of fillers, i.e., interfacial crystallization, is summarized and discussed in this paper. Interfacial crystallization has attracted tremendous interest in the past several decades, and some unique hybrid crystalline structures have been observed, including hybrid shish–kebab and hybrid shish–calabash structures in which the filler served as the shish and crystalline polymer as the kebab/calabash. Thus, the manipulation of the interfacial crystallization architecture offers a potential highly effective route to achieve strong polymer/filler interaction. This review is based on the latest development of interfacial crystallization in polymer/filler composites and will be organized as follows. The structural/morphological features of various interfacial crystallization fashions are described first. Subsequently, various influences on the final structure/morphology of hybrid crystallization and the nucleation and/or growth mechanisms of crystallization behaviors at polymer/filler interface are reviewed. Then recent studies on interfacial crystallization induced interfacial enhancement ascertained by different research methodologies are addressed, including a comparative analysis to highlight the positive role of interfacial crystallization on the resultant mechanical reinforcement. Finally, a conclusion, including future perspectives, is presented. |
---|---|
ISSN: | 0079-6700 1873-1619 |
DOI: | 10.1016/j.progpolymsci.2011.12.005 |