Loading…

Development of Novel Transportation Shells for the Rapid, Automated Manufacture of Automotive Composite Parts

In this paper the feasibility of a new approach, whereby dry fibre composite preforms of shaped and organised plies are held together by an external polymer shell, is presented for the manufacture of fibre reinforced composite parts at high volumes and low cost. The polymer shell, as a transport ves...

Full description

Saved in:
Bibliographic Details
Published in:Procedia manufacturing 2020, Vol.51, p.818-825
Main Authors: Willicombe, K., Elkington, M., Hamerton, I., Ward, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper the feasibility of a new approach, whereby dry fibre composite preforms of shaped and organised plies are held together by an external polymer shell, is presented for the manufacture of fibre reinforced composite parts at high volumes and low cost. The polymer shell, as a transport vessel, is intended to rapidly provide the composite preform with the required geometric stability and form; so reducing the impact of the time consuming binder activation processes that are currently used in traditional Liquid Composite Moulding (LCM) techniques. Removal of the binder activation process may also improve the final part quality during resin infusion stages, by retaining the preforms’ permeability, plus removing the inclusion of ‘foreign’ material not forming part of either the fibre or matrix systems. This paper presents the design of the new approach and its formulation; the development of understanding via lab-scale test machinery; results in terms of manufacturing capability - such as handling characteristics for pick and place automation, and mechanical performance of the presented LCM structures. Handling performance is particularly positive since better geometric stability and the easy formation of a vacuum seal between the robot head and the part is possible. The paper also presents a further novel development, whereby the transport vessels are retained as an integral element, providing the entire polymer matrix system for the final composite part. This enables further time and cost savings, replacing the need for the expensive LCM machinery that are currently utilised for rapid manufacture of composite parts.
ISSN:2351-9789
2351-9789
DOI:10.1016/j.promfg.2020.10.115