Loading…
Classifier Approaches for Liver Steatosis using Ultrasound Images
This paper presents a semi-automatic classification approach to evaluate steatotic liver tissues using B-scan ultrasound images. Several features have been extracted and used in three different classifiers, such as Artificial Neural Networks (ANN), Support Vector Machines (SVM) and k-Nearest Neighbo...
Saved in:
Published in: | Procedia technology 2012, Vol.5, p.763-770 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a semi-automatic classification approach to evaluate steatotic liver tissues using B-scan ultrasound images. Several features have been extracted and used in three different classifiers, such as Artificial Neural Networks (ANN), Support Vector Machines (SVM) and k-Nearest Neighbors (kNN). The classifiers were trained using the 10-cross validation method. A feature selection method based on stepwise regression was also exploited resulting in better accuracy predictions. The results showed that the SVM have a slightly higher performance than the kNN and the ANN, appearing as the most relevant one to be applied to the discrimination of pathologic tissues in clinical practice. |
---|---|
ISSN: | 2212-0173 2212-0173 |
DOI: | 10.1016/j.protcy.2012.09.084 |