Loading…
A Prototype-Based Modified DBSCAN for Gene Clustering
In this paper, we propose, a novel DBSCAN method to cluster the gene expression data. The main problem of DBSCAN is its quadratic computational complexity. We resolve this drawback by using the prototypes produced from a squared error clustering method such as K-means. Then, the DBSCAN technique is...
Saved in:
Published in: | Procedia technology 2012, Vol.6, p.485-492 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose, a novel DBSCAN method to cluster the gene expression data. The main problem of DBSCAN is its quadratic computational complexity. We resolve this drawback by using the prototypes produced from a squared error clustering method such as K-means. Then, the DBSCAN technique is applied efficiently using these prototypes. In our algorithm, during the iterations of DBSCAN, if a point from an uncovered prototype is assigned to a cluster, then all the other points of such prototype belongs to the same cluster. We have carried out excessive experiments on various two dimensional artificial and multi-dimensional biological data. The proposed technique is compared with few existing techniques. It is observed that proposed algorithm outperforms the existing methods. |
---|---|
ISSN: | 2212-0173 2212-0173 |
DOI: | 10.1016/j.protcy.2012.10.058 |