Loading…

Calibration of the NOMAD-UVIS data

The Ultraviolet and VIsible Spectrometer (UVIS), covering the 200–650 ​nm range, is one of three spectrometers that comprise the NOMAD instrument on the ExoMars 2016 Trace Gas Orbiter (TGO). UVIS can operate in solar occultation, nadir and limb viewing mode and was designed to monitor ozone and aero...

Full description

Saved in:
Bibliographic Details
Published in:Planetary and space science 2022-09, Vol.218, p.105504, Article 105504
Main Authors: Willame, Yannick, Depiesse, Cédric, Mason, Jonathon P., Thomas, Ian R., Patel, Manish R., Hathi, Brijen, Leese, Mark R., Bolsée, David, Wolff, Michael J., Trompet, Loïc, Vandaele, Ann Carine, Piccialli, Arianna, Aoki, Shohei, Ristic, Bojan, Neefs, Eddy, Beeckman, Bram, Berkenbosch, Sophie, Clairquin, Roland, Mahieux, Arnaud, Pereira, Nuno, Robert, Séverine, Viscardy, Sébastien, Wilquet, Valérie, Daerden, Frank, Lopez-Moreno, José Juan, Bellucci, Giancarlo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773
cites cdi_FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773
container_end_page
container_issue
container_start_page 105504
container_title Planetary and space science
container_volume 218
creator Willame, Yannick
Depiesse, Cédric
Mason, Jonathon P.
Thomas, Ian R.
Patel, Manish R.
Hathi, Brijen
Leese, Mark R.
Bolsée, David
Wolff, Michael J.
Trompet, Loïc
Vandaele, Ann Carine
Piccialli, Arianna
Aoki, Shohei
Ristic, Bojan
Neefs, Eddy
Beeckman, Bram
Berkenbosch, Sophie
Clairquin, Roland
Mahieux, Arnaud
Pereira, Nuno
Robert, Séverine
Viscardy, Sébastien
Wilquet, Valérie
Daerden, Frank
Lopez-Moreno, José Juan
Bellucci, Giancarlo
description The Ultraviolet and VIsible Spectrometer (UVIS), covering the 200–650 ​nm range, is one of three spectrometers that comprise the NOMAD instrument on the ExoMars 2016 Trace Gas Orbiter (TGO). UVIS can operate in solar occultation, nadir and limb viewing mode and was designed to monitor ozone and aerosols in the Martian atmosphere. Here, we describe the calibration procedure to convert the UVIS raw data into a calibrated data product ready for scientific exploitation. The calibration includes the CCD offset and dark current subtraction, the wavelength assignment, the noise identification and removal, the smearing removal, and the radiance or transmittance conversion. A straylight correction, critical for some parts of the UVIS spectral range, is also applied during the data reduction process, which is described in more detail in two companion papers [Mason et al., 2022; Depiesse et al., In prep] corresponding to two different and independent methods giving consistent results. The solar occultation observations are converted into transmittance and are therefore self-calibrating, while nadir and limb measurements require an absolute radiometric calibration. A comparison with coincident nadir MRO/MARCI measurements is provided as a final validation and generally shows a ±10% agreement on the radiances measured by both instruments. •Description of the calibration of UVIS measurements to produce level 1 data from raw data•CCD non-linearity correction, offset removal, dark current removal, Bad pixel removal, Smearing removal.•A straylight correction is also applied but described in companion papers.•Conversions: Pixel-wavelength assignment, Radiance (nadir) or Transmittance (occultation) conversion.•Radiometric comparison with coincident MRO/MARCI measurements, serving as validation for the radiance calibrated data.
doi_str_mv 10.1016/j.pss.2022.105504
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_pss_2022_105504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032063322000903</els_id><sourcerecordid>S0032063322000903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEd_gLviPvUmaV64GuprYHQWOm5DmiaYMk6HpAj-ezvUtavLufAdzofQNYGKABG3fXXIuaJA6ZQ5h_oEFURJhjkodYoKAEYxCMbO0UXOPQAIQWWBbhq7i22yYxz25RDK8dOXr5uX5T3efqzeys6O9hKdBbvL_urvLtD28eG9ecbrzdOqWa6xYzWMmLGaCa5F8IwG0nLrLSdacSW101py7rl0IYADUWsC06ulnHbCedU5kJItEJl7XRpyTj6YQ4pfNv0YAuYoaXozSZqjpJklJ-ZuZvw07Dv6ZLKLfu98F5N3o-mG-A_9CxwNVps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration of the NOMAD-UVIS data</title><source>ScienceDirect Freedom Collection</source><creator>Willame, Yannick ; Depiesse, Cédric ; Mason, Jonathon P. ; Thomas, Ian R. ; Patel, Manish R. ; Hathi, Brijen ; Leese, Mark R. ; Bolsée, David ; Wolff, Michael J. ; Trompet, Loïc ; Vandaele, Ann Carine ; Piccialli, Arianna ; Aoki, Shohei ; Ristic, Bojan ; Neefs, Eddy ; Beeckman, Bram ; Berkenbosch, Sophie ; Clairquin, Roland ; Mahieux, Arnaud ; Pereira, Nuno ; Robert, Séverine ; Viscardy, Sébastien ; Wilquet, Valérie ; Daerden, Frank ; Lopez-Moreno, José Juan ; Bellucci, Giancarlo</creator><creatorcontrib>Willame, Yannick ; Depiesse, Cédric ; Mason, Jonathon P. ; Thomas, Ian R. ; Patel, Manish R. ; Hathi, Brijen ; Leese, Mark R. ; Bolsée, David ; Wolff, Michael J. ; Trompet, Loïc ; Vandaele, Ann Carine ; Piccialli, Arianna ; Aoki, Shohei ; Ristic, Bojan ; Neefs, Eddy ; Beeckman, Bram ; Berkenbosch, Sophie ; Clairquin, Roland ; Mahieux, Arnaud ; Pereira, Nuno ; Robert, Séverine ; Viscardy, Sébastien ; Wilquet, Valérie ; Daerden, Frank ; Lopez-Moreno, José Juan ; Bellucci, Giancarlo</creatorcontrib><description>The Ultraviolet and VIsible Spectrometer (UVIS), covering the 200–650 ​nm range, is one of three spectrometers that comprise the NOMAD instrument on the ExoMars 2016 Trace Gas Orbiter (TGO). UVIS can operate in solar occultation, nadir and limb viewing mode and was designed to monitor ozone and aerosols in the Martian atmosphere. Here, we describe the calibration procedure to convert the UVIS raw data into a calibrated data product ready for scientific exploitation. The calibration includes the CCD offset and dark current subtraction, the wavelength assignment, the noise identification and removal, the smearing removal, and the radiance or transmittance conversion. A straylight correction, critical for some parts of the UVIS spectral range, is also applied during the data reduction process, which is described in more detail in two companion papers [Mason et al., 2022; Depiesse et al., In prep] corresponding to two different and independent methods giving consistent results. The solar occultation observations are converted into transmittance and are therefore self-calibrating, while nadir and limb measurements require an absolute radiometric calibration. A comparison with coincident nadir MRO/MARCI measurements is provided as a final validation and generally shows a ±10% agreement on the radiances measured by both instruments. •Description of the calibration of UVIS measurements to produce level 1 data from raw data•CCD non-linearity correction, offset removal, dark current removal, Bad pixel removal, Smearing removal.•A straylight correction is also applied but described in companion papers.•Conversions: Pixel-wavelength assignment, Radiance (nadir) or Transmittance (occultation) conversion.•Radiometric comparison with coincident MRO/MARCI measurements, serving as validation for the radiance calibrated data.</description><identifier>ISSN: 0032-0633</identifier><identifier>EISSN: 1873-5088</identifier><identifier>DOI: 10.1016/j.pss.2022.105504</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Planetary and space science, 2022-09, Vol.218, p.105504, Article 105504</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773</citedby><cites>FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Willame, Yannick</creatorcontrib><creatorcontrib>Depiesse, Cédric</creatorcontrib><creatorcontrib>Mason, Jonathon P.</creatorcontrib><creatorcontrib>Thomas, Ian R.</creatorcontrib><creatorcontrib>Patel, Manish R.</creatorcontrib><creatorcontrib>Hathi, Brijen</creatorcontrib><creatorcontrib>Leese, Mark R.</creatorcontrib><creatorcontrib>Bolsée, David</creatorcontrib><creatorcontrib>Wolff, Michael J.</creatorcontrib><creatorcontrib>Trompet, Loïc</creatorcontrib><creatorcontrib>Vandaele, Ann Carine</creatorcontrib><creatorcontrib>Piccialli, Arianna</creatorcontrib><creatorcontrib>Aoki, Shohei</creatorcontrib><creatorcontrib>Ristic, Bojan</creatorcontrib><creatorcontrib>Neefs, Eddy</creatorcontrib><creatorcontrib>Beeckman, Bram</creatorcontrib><creatorcontrib>Berkenbosch, Sophie</creatorcontrib><creatorcontrib>Clairquin, Roland</creatorcontrib><creatorcontrib>Mahieux, Arnaud</creatorcontrib><creatorcontrib>Pereira, Nuno</creatorcontrib><creatorcontrib>Robert, Séverine</creatorcontrib><creatorcontrib>Viscardy, Sébastien</creatorcontrib><creatorcontrib>Wilquet, Valérie</creatorcontrib><creatorcontrib>Daerden, Frank</creatorcontrib><creatorcontrib>Lopez-Moreno, José Juan</creatorcontrib><creatorcontrib>Bellucci, Giancarlo</creatorcontrib><title>Calibration of the NOMAD-UVIS data</title><title>Planetary and space science</title><description>The Ultraviolet and VIsible Spectrometer (UVIS), covering the 200–650 ​nm range, is one of three spectrometers that comprise the NOMAD instrument on the ExoMars 2016 Trace Gas Orbiter (TGO). UVIS can operate in solar occultation, nadir and limb viewing mode and was designed to monitor ozone and aerosols in the Martian atmosphere. Here, we describe the calibration procedure to convert the UVIS raw data into a calibrated data product ready for scientific exploitation. The calibration includes the CCD offset and dark current subtraction, the wavelength assignment, the noise identification and removal, the smearing removal, and the radiance or transmittance conversion. A straylight correction, critical for some parts of the UVIS spectral range, is also applied during the data reduction process, which is described in more detail in two companion papers [Mason et al., 2022; Depiesse et al., In prep] corresponding to two different and independent methods giving consistent results. The solar occultation observations are converted into transmittance and are therefore self-calibrating, while nadir and limb measurements require an absolute radiometric calibration. A comparison with coincident nadir MRO/MARCI measurements is provided as a final validation and generally shows a ±10% agreement on the radiances measured by both instruments. •Description of the calibration of UVIS measurements to produce level 1 data from raw data•CCD non-linearity correction, offset removal, dark current removal, Bad pixel removal, Smearing removal.•A straylight correction is also applied but described in companion papers.•Conversions: Pixel-wavelength assignment, Radiance (nadir) or Transmittance (occultation) conversion.•Radiometric comparison with coincident MRO/MARCI measurements, serving as validation for the radiance calibrated data.</description><issn>0032-0633</issn><issn>1873-5088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEd_gLviPvUmaV64GuprYHQWOm5DmiaYMk6HpAj-ezvUtavLufAdzofQNYGKABG3fXXIuaJA6ZQ5h_oEFURJhjkodYoKAEYxCMbO0UXOPQAIQWWBbhq7i22yYxz25RDK8dOXr5uX5T3efqzeys6O9hKdBbvL_urvLtD28eG9ecbrzdOqWa6xYzWMmLGaCa5F8IwG0nLrLSdacSW101py7rl0IYADUWsC06ulnHbCedU5kJItEJl7XRpyTj6YQ4pfNv0YAuYoaXozSZqjpJklJ-ZuZvw07Dv6ZLKLfu98F5N3o-mG-A_9CxwNVps</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Willame, Yannick</creator><creator>Depiesse, Cédric</creator><creator>Mason, Jonathon P.</creator><creator>Thomas, Ian R.</creator><creator>Patel, Manish R.</creator><creator>Hathi, Brijen</creator><creator>Leese, Mark R.</creator><creator>Bolsée, David</creator><creator>Wolff, Michael J.</creator><creator>Trompet, Loïc</creator><creator>Vandaele, Ann Carine</creator><creator>Piccialli, Arianna</creator><creator>Aoki, Shohei</creator><creator>Ristic, Bojan</creator><creator>Neefs, Eddy</creator><creator>Beeckman, Bram</creator><creator>Berkenbosch, Sophie</creator><creator>Clairquin, Roland</creator><creator>Mahieux, Arnaud</creator><creator>Pereira, Nuno</creator><creator>Robert, Séverine</creator><creator>Viscardy, Sébastien</creator><creator>Wilquet, Valérie</creator><creator>Daerden, Frank</creator><creator>Lopez-Moreno, José Juan</creator><creator>Bellucci, Giancarlo</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Calibration of the NOMAD-UVIS data</title><author>Willame, Yannick ; Depiesse, Cédric ; Mason, Jonathon P. ; Thomas, Ian R. ; Patel, Manish R. ; Hathi, Brijen ; Leese, Mark R. ; Bolsée, David ; Wolff, Michael J. ; Trompet, Loïc ; Vandaele, Ann Carine ; Piccialli, Arianna ; Aoki, Shohei ; Ristic, Bojan ; Neefs, Eddy ; Beeckman, Bram ; Berkenbosch, Sophie ; Clairquin, Roland ; Mahieux, Arnaud ; Pereira, Nuno ; Robert, Séverine ; Viscardy, Sébastien ; Wilquet, Valérie ; Daerden, Frank ; Lopez-Moreno, José Juan ; Bellucci, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willame, Yannick</creatorcontrib><creatorcontrib>Depiesse, Cédric</creatorcontrib><creatorcontrib>Mason, Jonathon P.</creatorcontrib><creatorcontrib>Thomas, Ian R.</creatorcontrib><creatorcontrib>Patel, Manish R.</creatorcontrib><creatorcontrib>Hathi, Brijen</creatorcontrib><creatorcontrib>Leese, Mark R.</creatorcontrib><creatorcontrib>Bolsée, David</creatorcontrib><creatorcontrib>Wolff, Michael J.</creatorcontrib><creatorcontrib>Trompet, Loïc</creatorcontrib><creatorcontrib>Vandaele, Ann Carine</creatorcontrib><creatorcontrib>Piccialli, Arianna</creatorcontrib><creatorcontrib>Aoki, Shohei</creatorcontrib><creatorcontrib>Ristic, Bojan</creatorcontrib><creatorcontrib>Neefs, Eddy</creatorcontrib><creatorcontrib>Beeckman, Bram</creatorcontrib><creatorcontrib>Berkenbosch, Sophie</creatorcontrib><creatorcontrib>Clairquin, Roland</creatorcontrib><creatorcontrib>Mahieux, Arnaud</creatorcontrib><creatorcontrib>Pereira, Nuno</creatorcontrib><creatorcontrib>Robert, Séverine</creatorcontrib><creatorcontrib>Viscardy, Sébastien</creatorcontrib><creatorcontrib>Wilquet, Valérie</creatorcontrib><creatorcontrib>Daerden, Frank</creatorcontrib><creatorcontrib>Lopez-Moreno, José Juan</creatorcontrib><creatorcontrib>Bellucci, Giancarlo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Planetary and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willame, Yannick</au><au>Depiesse, Cédric</au><au>Mason, Jonathon P.</au><au>Thomas, Ian R.</au><au>Patel, Manish R.</au><au>Hathi, Brijen</au><au>Leese, Mark R.</au><au>Bolsée, David</au><au>Wolff, Michael J.</au><au>Trompet, Loïc</au><au>Vandaele, Ann Carine</au><au>Piccialli, Arianna</au><au>Aoki, Shohei</au><au>Ristic, Bojan</au><au>Neefs, Eddy</au><au>Beeckman, Bram</au><au>Berkenbosch, Sophie</au><au>Clairquin, Roland</au><au>Mahieux, Arnaud</au><au>Pereira, Nuno</au><au>Robert, Séverine</au><au>Viscardy, Sébastien</au><au>Wilquet, Valérie</au><au>Daerden, Frank</au><au>Lopez-Moreno, José Juan</au><au>Bellucci, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of the NOMAD-UVIS data</atitle><jtitle>Planetary and space science</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>218</volume><spage>105504</spage><pages>105504-</pages><artnum>105504</artnum><issn>0032-0633</issn><eissn>1873-5088</eissn><abstract>The Ultraviolet and VIsible Spectrometer (UVIS), covering the 200–650 ​nm range, is one of three spectrometers that comprise the NOMAD instrument on the ExoMars 2016 Trace Gas Orbiter (TGO). UVIS can operate in solar occultation, nadir and limb viewing mode and was designed to monitor ozone and aerosols in the Martian atmosphere. Here, we describe the calibration procedure to convert the UVIS raw data into a calibrated data product ready for scientific exploitation. The calibration includes the CCD offset and dark current subtraction, the wavelength assignment, the noise identification and removal, the smearing removal, and the radiance or transmittance conversion. A straylight correction, critical for some parts of the UVIS spectral range, is also applied during the data reduction process, which is described in more detail in two companion papers [Mason et al., 2022; Depiesse et al., In prep] corresponding to two different and independent methods giving consistent results. The solar occultation observations are converted into transmittance and are therefore self-calibrating, while nadir and limb measurements require an absolute radiometric calibration. A comparison with coincident nadir MRO/MARCI measurements is provided as a final validation and generally shows a ±10% agreement on the radiances measured by both instruments. •Description of the calibration of UVIS measurements to produce level 1 data from raw data•CCD non-linearity correction, offset removal, dark current removal, Bad pixel removal, Smearing removal.•A straylight correction is also applied but described in companion papers.•Conversions: Pixel-wavelength assignment, Radiance (nadir) or Transmittance (occultation) conversion.•Radiometric comparison with coincident MRO/MARCI measurements, serving as validation for the radiance calibrated data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pss.2022.105504</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0633
ispartof Planetary and space science, 2022-09, Vol.218, p.105504, Article 105504
issn 0032-0633
1873-5088
language eng
recordid cdi_crossref_primary_10_1016_j_pss_2022_105504
source ScienceDirect Freedom Collection
title Calibration of the NOMAD-UVIS data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20the%20NOMAD-UVIS%20data&rft.jtitle=Planetary%20and%20space%20science&rft.au=Willame,%20Yannick&rft.date=2022-09-01&rft.volume=218&rft.spage=105504&rft.pages=105504-&rft.artnum=105504&rft.issn=0032-0633&rft.eissn=1873-5088&rft_id=info:doi/10.1016/j.pss.2022.105504&rft_dat=%3Celsevier_cross%3ES0032063322000903%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-33436596fe32f1b5aea51985879c99755e57cff0c064910997b252d6ce8dc0773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true