Loading…
The effect of pharmacological PI3Kγ inhibitor on eotaxin-induced human eosinophil functions
Abstract Background Asthma is characterized by chronic inflammation caused by activation of immune cells including Th2 lymphocytes and eosinophils. Phosphoinositide 3-kinase (PI3K) γ deficient asthmatic mice did not develop lung eosinophilia, although the detailed mechanisms are not well known. A CC...
Saved in:
Published in: | Pulmonary pharmacology & therapeutics 2014-04, Vol.27 (2), p.164-169 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Background Asthma is characterized by chronic inflammation caused by activation of immune cells including Th2 lymphocytes and eosinophils. Phosphoinositide 3-kinase (PI3K) γ deficient asthmatic mice did not develop lung eosinophilia, although the detailed mechanisms are not well known. A CC chemokine eotaxin (CCL11) plays a prominent role in developing eosinophilic inflammation through CCR3. In this study, we tested the roles of PI3Kγ in eotaxin-induced eosinophil functions using a pharmacological inhibitor. Method Human peripheral blood eosinophils were isolated by CD16-negative selection method. The effect of AS605240, synthetic PI3Kγ inhibitor on eotaxin-induced adhesion, chemotaxis, and degranulation were studied using intracellular adhesion molecule-1 (ICAM-1)-coated plates, Boyden chamber system, ELISA for eosinophil-derived neurotoxin (EDN) levels in the culture supernatant, respectively. CCR3 expression levels and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation were assessed by flowcytometry. Involvement of PI3Kγ in spontaneous apoptosis was studied using flowcytometry. Results Although AS605240 did not affect the eosinophil spontaneous apoptosis, eotaxin-induced chemotaxis, adhesion to ICAM-1 coated plate, and EDN release were inhibited by AS605240. AS605240 also inhibited the eotaxin-induced ERK1/2 phosphorylation without down-regulation of surface CCR3 expression. Conclusion These results indicate that PI3Kγ inhibitor attenuates eotaxin-induced eosinophil functions by suppressing the downstream signaling of CCR3 without significant cytotoxicity. PI3Kγ plays an important role in the development of eosinophilic inflammation and blockade of PI3Kγ might be a therapeutic strategy for treatment of eosinophil-related diseases including asthma. |
---|---|
ISSN: | 1094-5539 1522-9629 |
DOI: | 10.1016/j.pupt.2013.11.006 |