Loading…

The characteristics of epoxy resin cured by γ-ray and E-beam

Epoxy resins are widely used as high-performance thermosetting resins for many industrial applications. In this study, the effect of an electron beam (E-beam) and γ-ray irradiation on the curing of epoxy resins was investigated. Diglycidyl ether of bisphenol-A(DGEBA), diglycidyl ether of bisphenol-F...

Full description

Saved in:
Bibliographic Details
Published in:Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2004-09, Vol.71 (1), p.243-246
Main Authors: Nho, Young Chang, Kang, Phil Hyun, Park, Jong Seok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epoxy resins are widely used as high-performance thermosetting resins for many industrial applications. In this study, the effect of an electron beam (E-beam) and γ-ray irradiation on the curing of epoxy resins was investigated. Diglycidyl ether of bisphenol-A(DGEBA), diglycidyl ether of bisphenol-F(DGEBF) as epoxy resins, triarylsulfonium hexafluoroantimonate(TASHFA), and triarylsulfonium hexafluorophosphate(TASHFP) as initiators were used in this study. The chemical and mechanical characteristics of irradiated epoxy resins were compared after curing of E-beam and γ-ray irradiation up to 50 kGy in N 2 and air atmosphere. We ascertained the effect of oxygen on the radiation curing of epoxy resin. The thermal properties of cured epoxy were investigated using DMA and TGA. Mechanical properties such as flexural strength were measured. The chemical structures of cured epoxy were characterized by FT-NIR. The gel fraction and the stress at yield of epoxy resins irradiated by E-beam and γ-ray in N 2 atmosphere were also compared with those of epoxy resins irradiated by E-beam and γ-ray in air.
ISSN:0969-806X
1879-0895
DOI:10.1016/j.radphyschem.2004.03.047