Loading…
Evaluation of patients doses at medical imaging departments
Radiation exposures for medical purposes is remained the main sources to public from manmade radiation. The aims of the study are to patients’ radiation doses during specific planar radiography procedures. A total of 247 patients were examined at four radiology department in Khartoum state, Sudan. T...
Saved in:
Published in: | Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2023-02, Vol.203, p.110541, Article 110541 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiation exposures for medical purposes is remained the main sources to public from manmade radiation. The aims of the study are to patients’ radiation doses during specific planar radiography procedures. A total of 247 patients were examined at four radiology department in Khartoum state, Sudan. The absorbed dose to air at the center of the beam, including backscattered radiation, is known as the entrance surface air kerma (ESAK, mGy). ESAK (Ke) can be computed using the product backscatter factor (B) and incident air kerma Ki. The mean ESAK (mGy) for the chest, skull, abdomen, hip, lumbar spine and limbs procedures were 0.2, 0.76, 97, 1.88, 1.25, 2.25 and 0.30 mGy, respectively. The average ESAK (mGy) values attained for eight planar radiography procedures are comparable or slightly lesser than the previously published studies for the chest, pelvis, and limbs. The patient doses during the skull, abdomen, hip, and spinal cord (lumbar spine) are lower than the previously published values.
•ESAK during eight planar imaging procedures were evaluated.•The radiographic equipment performance in all hospitals was acceptable.•Wide variability in the patients' doses per radiographic was noticed.•Standardized imaging protocols are recommended. |
---|---|
ISSN: | 0969-806X 1879-0895 |
DOI: | 10.1016/j.radphyschem.2022.110541 |