Loading…

On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater

This paper presents a numerical study on the hydrodynamic performance of a vertical pile-restrained wave energy converter type floating breakwater. The aims are to further understand the characteristics of such integrated system in terms of both wave energy extraction and wave attenuation, and to pr...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2020-02, Vol.146, p.414-425
Main Authors: Chen, Qiang, Zang, Jun, Birchall, Jonathan, Ning, Dezhi, Zhao, Xuanlie, Gao, Junliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a numerical study on the hydrodynamic performance of a vertical pile-restrained wave energy converter type floating breakwater. The aims are to further understand the characteristics of such integrated system in terms of both wave energy extraction and wave attenuation, and to provide guidance for optimising the shape of the floating breakwater for more energy absorption and less wave transmission at the same time. The numerical model solves the incompressible Navier-Stokes equations for free-surface flows using the particle-in-cell method and incorporates a Cartesian cut cell based strong coupling algorithm for fluid-structure interaction. The numerical model is first validated against an existing experiment, consisting of a rectangular box as the floating breakwater and a power take-off system installed above the breakwater, for the computation of the capture width ratio and wave transmission coefficients. Following that, an optimisation study based on the numerical model is conducted focusing on modifying the shape of the floating breakwater used in the experiment. The results indicate that by changing only the seaward side straight corner of the rectangular box to a small curve corner, the integrated system achieves significantly more wave energy extraction at the cost of only a slight increase in wave transmission.
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2019.06.149