Loading…
The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty
Geothermal energy is gaining momentum as a renewable energy source. Reservoir simulation studies are often used to understand the underlying physics interactions and support decision making. Uncertainty related to geothermal systems can be substantial for subsurface and operational parameters and th...
Saved in:
Published in: | Renewable energy 2021-06, Vol.171, p.927-946 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Geothermal energy is gaining momentum as a renewable energy source. Reservoir simulation studies are often used to understand the underlying physics interactions and support decision making. Uncertainty related to geothermal systems can be substantial for subsurface and operational parameters and their interaction with regards to the output in terms of lifetime, energy and economic output. Specifically, for geothermal systems with the fault acting as the main fluid pathway the relevant field development uncertainties have not been comprehensively addressed. In this study we show how the produced energy, system lifetime and NPV are affected considering a range of subsurface and operational parameters as uncertainty sources utilizing an ensemble of 16,200 3D Hydraulic-Thermal (HT) reservoir simulations, conceptually based on the Rittershoffen field. A well configuration with oblique angles with respect to the main permeability anisotropy axes results in higher system lifetime, generated energy and NPV. A well spacing of 600 m consistently yields a higher economic efficiency (€/MWh) under all uncertainty parameters considered. More robust development options could be utilized in the absence of fault permeability characterization to ensure improved output prediction under uncertainty. Studies based on the methodology presented can improve investment efficiency for field development under subsurface and operational uncertainty. |
---|---|
ISSN: | 0960-1481 1879-0682 |
DOI: | 10.1016/j.renene.2021.02.148 |