Loading…

A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation

The Earth-Air Heat Exchanger (EAHE) improves the thermal condition inside buildings, reducing the electrical energy consumption of standard air conditioning equipment. The general objective of this research is to present a complete numerical approach to the study of the EAHE. Three specific objectiv...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2022-05, Vol.191, p.535-556
Main Authors: Rodrigues, Michel Kepes, Vaz, Joaquim, Oliveira Rocha, Luiz Alberto, Domingues dos Santos, Elizaldo, Isoldi, Liércio André
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Earth-Air Heat Exchanger (EAHE) improves the thermal condition inside buildings, reducing the electrical energy consumption of standard air conditioning equipment. The general objective of this research is to present a complete numerical approach to the study of the EAHE. Three specific objectives were defined: improvement of the computational model, developing the Compact Computational Model (CCM); definition of the Energy Performance Indicator (EPI), dedicated to the analysis of the EAHE; and application of the Constructal Design method, associated with CCM and EPI, in a case study of the Y-shaped EAHE. The results showed that it was possible to validate and verify the CCM, which presents, among other improvements, the decoupled treatment between thermal and fluid-dynamics problems, the reduction of processing time, and the possibility of numerically simulating the EAHE in several regions of the planet. It was also possible to prove the EPI effectiveness, allowing the EAHE performance to be evaluated with a single indicator, concomitantly considering thermal and fluid-dynamic parameters. It was still defined the optimal configuration of the Y-shaped EAHE, generating monthly electricity savings of up to 117.72 kWh (heating) in cold periods, and 74.13 kWh (cooling), in hot periods.
ISSN:0960-1481
DOI:10.1016/j.renene.2022.04.007