Loading…
Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach
The production of wood pellets was born as a response to the need to manage the residual sawdust of wood processing. Nowadays, the standard UNE EN ISO 17225-2:2021 determine the general requirements of the fuel specifications and their classes. Among these, the length of the pellet plays an importan...
Saved in:
Published in: | Renewable energy 2022-09, Vol.197, p.406-416 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The production of wood pellets was born as a response to the need to manage the residual sawdust of wood processing. Nowadays, the standard UNE EN ISO 17225-2:2021 determine the general requirements of the fuel specifications and their classes. Among these, the length of the pellet plays an important role in defining its behaviour in different contexts, starting from the way the spaces are occupied both in static (storage) and dynamic (feeding) conditions. The geometric-dimensional aspects of pellets are of particular importance for the density, the energy density, and the effective thermal capacity of thermal plants, affecting also the flowability. Despite the extreme importance of such parameters, the pellet measurement is carried out using a precision caliper on a group of individual pellets taken from laboratory samples. This method is time-consuming and returns dimensional values in very small quantities, raising the issue of sample representativeness. Considering the impact of the quality parameters, it is important to examine alternative solutions. In this light, this work has the task of testing and verifying the efficiency of a system that uses a deep neural network, to determine the geometric-dimensional parameters of wood pellets. Thus, the implemented system detects, segments, and determines the dimensions of wood pellets in a bunch. This problem is not trivial, due to the irregular lighting conditions that affect the quality of the images and the overlapping of the wood pellets. To evaluate the performance of the deep neural network approach, several experiments have been carried out, in different lighting conditions and for validation purposes, we considered also PVC pellets, which have a known and fixed dimension. The comparison between real environment data and the validation set, despite a slight tendency towards underestimation in length, shows great performances in terms of RMSE.
[Display omitted]
•Deep learning used to determine the geometric-dimensional parameters of wood pellets.•The system detects, segments, and determines the wood pellets dimensions in a bunch.•The detection and segmentation model is based on the Mask r-CNN architecture.•This solution can be applied in thermal plants to automate the pellet quality control. |
---|---|
ISSN: | 0960-1481 1879-0682 |
DOI: | 10.1016/j.renene.2022.07.109 |