Loading…

The performance evaluation of the free-falling particle solar receiver with a novel zigzag mass-flow controlled particle release pattern

A free-falling particle receiver is a promising technology to be used in concentrating solar power plants. In this study, an optical-thermal coupled model is established by combining a Monte Carlo ray-tracing method with a finite volume method to simulate the energy transfer processes in a solar pow...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-02, Vol.222, p.119821, Article 119821
Main Authors: Wang, Kun, Li, Shen-Feng, Li, Yan-Fei, Yan, Peng-Yu, Zhang, Zhen-Dong, Min, Chun-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A free-falling particle receiver is a promising technology to be used in concentrating solar power plants. In this study, an optical-thermal coupled model is established by combining a Monte Carlo ray-tracing method with a finite volume method to simulate the energy transfer processes in a solar power tower system employing a cavity receiver. Using the developed model, a novel particle release pattern, zigzag mass-flow controlled pattern, is proposed and compared with three other patterns, straight-line, zigzag, and mass-flow controlled patterns. First, the effects of the amplitude of the zigzag particle release slots on the receiver performance are analyzed. Then, the variations of the solar energy entering the receiver at different times on the vernal equinox is studied. Moreover, a new particle release pattern, zigzag mass-flow controlled pattern, is proposed and evaluated. The results demonstrated that the thermal performance of the zigzag mass-flow controlled particle release pattern was found to be superior to the other three patterns, allowing an increase in the thermal efficiency of 2.90 %. This allows for achieving effective thermal performance improvements while employing cost-effective designs in the free-falling particle receiver.
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2023.119821