Loading…

Seasonal storage for space heating using solar DHW surplus

Due to the seasonality of solar energy, achieving 100 % of annual solar fraction for domestic hot water (DHW) production is only possible by greatly oversizing the collector area of a solar system, thus creating a significant energy surplus in summer. This simulation study investigates the possibili...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-09, Vol.231, p.120889, Article 120889
Main Authors: Brites, Gonçalo J., Garruço, Manuel, Fernandes, Marco S., Sá Pinto, Diogo M., Gaspar, Adélio R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the seasonality of solar energy, achieving 100 % of annual solar fraction for domestic hot water (DHW) production is only possible by greatly oversizing the collector area of a solar system, thus creating a significant energy surplus in summer. This simulation study investigates the possibility of using this surplus to promote space heating during winter, in a moderate South European climate, to try achieving a total solar fraction of 100 %. Priority is given to the DHW reservoir, diverting the excess heat to an additional large-capacity seasonal thermal energy storage (STES) reservoir. The best configuration for the number of collectors and STES tank volume was assessed through a parametric study, to reach a compromise between a high solar fraction and a reasonable system efficiency. The results showed that a system with 10 m2 of solar collectors and a 30 m3 STES tank or, alternatively, 20 m2 of collectors and a 20 m3 tank achieved the desired solar fraction and efficiency for the chosen building and local climate conditions. A comparison with the literature shows that this strategy can achieve better results, requiring less collector area and storage volume.
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2024.120889