Loading…

Interaction mechanism and pollutant emission characteristics of sewage sludge and corncob co-combustion

The co-combustion of sewage sludge and biomass has demonstrated significant potential for reducing carbon emissions and realizing the resource utilization of solid waste. In this study, the co-combustion behavior and pollutant emissions of sewage sludge and corncob were systematically investigated u...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-09, Vol.231, p.120961, Article 120961
Main Authors: Ni, Zhanshi, Liu, Xiang, Shi, Hao, Tian, Junjian, Yao, Yurou, Hu, Peng, He, Liqun, Meng, Kesheng, Lin, Qizhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The co-combustion of sewage sludge and biomass has demonstrated significant potential for reducing carbon emissions and realizing the resource utilization of solid waste. In this study, the co-combustion behavior and pollutant emissions of sewage sludge and corncob were systematically investigated using thermogravimetric-Fourier transform infrared spectroscopy-mass spectrometry (TG-FTIR-MS) and a fixed-bed reactor. When the corncob blending ratio reached 30 %, the ignition temperature was 179.01 °C lower than that of sewage sludge, and the comprehensive combustion index increased by 13.92 times. The corncob in the mixed fuel dominated the volatiles' release and combustion process. The interaction strength increased as the corncob blending ratio increased. When the corncob blending ratio reached 70 %, it promoted the thermal weight loss process of sewage sludge. The release rate of CO2 increased as the biomass ratio increased, and a 30 % corncob content could inhibit CO2 emissions. Simultaneously, the interaction between sewage sludge and corncob inhibited the emissions of CO and NO during the co-combustion process, improving the combustion efficiency. This study provides theoretical support for developing the fuel value of sewage sludge, improving the amount of solid waste collaborative disposal, and realizing the leading carbon peak in thermal power industry. [Display omitted]
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2024.120961