Loading…
Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning
This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque,...
Saved in:
Published in: | Renewable energy 2024-11, Vol.234, p.121265, Article 121265 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3 |
container_end_page | |
container_issue | |
container_start_page | 121265 |
container_title | Renewable energy |
container_volume | 234 |
creator | Li, Tenghui Yang, Jin Ioannou, Anastasia |
description | This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation. |
doi_str_mv | 10.1016/j.renene.2024.121265 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_renene_2024_121265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124013338</els_id><sourcerecordid>S0960148124013338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhnNQsFb_gYf8gV0n-5XdiyD1o0LBi55DmkxKyjYps2lL_71bVjzKHIaX4XkZHsYeBOQCRPO4zQnDOHkBRZWLQhRNfcVm0DWQiaoVN-x2GLYAom5lNWP9i046s-SPGLiJIVHseXT85IPl6UBrH5AfgkXiMfSXsI-nMQyJdMLNmR-95hZxz3vUFHzYcD2ShD64SAZ3GNLf6Y5dO90PeP-75-z77fVrscxWn-8fi-dVZkoQKUOoi7rR0FjnoJJaIiBWCK41EktrOwm2lJ10tqi1BtO1beVQyjWgk43Fcs6qqddQHAZCp_bkd5rOSoC6WFJbNVlSF0tqsjRiTxOG429Hj6QG4zEYtJ7QJGWj_7_gB5wld5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</title><source>ScienceDirect Freedom Collection</source><creator>Li, Tenghui ; Yang, Jin ; Ioannou, Anastasia</creator><creatorcontrib>Li, Tenghui ; Yang, Jin ; Ioannou, Anastasia</creatorcontrib><description>This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2024.121265</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Deep learning ; Model predictive control ; Reinforcement learning ; Wind turbine control</subject><ispartof>Renewable energy, 2024-11, Vol.234, p.121265, Article 121265</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3</cites><orcidid>0000-0002-1026-8495 ; 0000-0001-8281-5358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Li, Tenghui</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Ioannou, Anastasia</creatorcontrib><title>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</title><title>Renewable energy</title><description>This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.</description><subject>Deep learning</subject><subject>Model predictive control</subject><subject>Reinforcement learning</subject><subject>Wind turbine control</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhnNQsFb_gYf8gV0n-5XdiyD1o0LBi55DmkxKyjYps2lL_71bVjzKHIaX4XkZHsYeBOQCRPO4zQnDOHkBRZWLQhRNfcVm0DWQiaoVN-x2GLYAom5lNWP9i046s-SPGLiJIVHseXT85IPl6UBrH5AfgkXiMfSXsI-nMQyJdMLNmR-95hZxz3vUFHzYcD2ShD64SAZ3GNLf6Y5dO90PeP-75-z77fVrscxWn-8fi-dVZkoQKUOoi7rR0FjnoJJaIiBWCK41EktrOwm2lJ10tqi1BtO1beVQyjWgk43Fcs6qqddQHAZCp_bkd5rOSoC6WFJbNVlSF0tqsjRiTxOG429Hj6QG4zEYtJ7QJGWj_7_gB5wld5Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Li, Tenghui</creator><creator>Yang, Jin</creator><creator>Ioannou, Anastasia</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1026-8495</orcidid><orcidid>https://orcid.org/0000-0001-8281-5358</orcidid></search><sort><creationdate>202411</creationdate><title>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</title><author>Li, Tenghui ; Yang, Jin ; Ioannou, Anastasia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Model predictive control</topic><topic>Reinforcement learning</topic><topic>Wind turbine control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tenghui</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Ioannou, Anastasia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tenghui</au><au>Yang, Jin</au><au>Ioannou, Anastasia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</atitle><jtitle>Renewable energy</jtitle><date>2024-11</date><risdate>2024</risdate><volume>234</volume><spage>121265</spage><pages>121265-</pages><artnum>121265</artnum><issn>0960-1481</issn><abstract>This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.121265</doi><orcidid>https://orcid.org/0000-0002-1026-8495</orcidid><orcidid>https://orcid.org/0000-0001-8281-5358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2024-11, Vol.234, p.121265, Article 121265 |
issn | 0960-1481 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_renene_2024_121265 |
source | ScienceDirect Freedom Collection |
subjects | Deep learning Model predictive control Reinforcement learning Wind turbine control |
title | Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20control%20of%20wind%20turbine%20under%20online%20power%20strategy%20via%20deep%20learning%20and%20reinforcement%20learning&rft.jtitle=Renewable%20energy&rft.au=Li,%20Tenghui&rft.date=2024-11&rft.volume=234&rft.spage=121265&rft.pages=121265-&rft.artnum=121265&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2024.121265&rft_dat=%3Celsevier_cross%3ES0960148124013338%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |