Loading…

Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning

This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque,...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-11, Vol.234, p.121265, Article 121265
Main Authors: Li, Tenghui, Yang, Jin, Ioannou, Anastasia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3
container_end_page
container_issue
container_start_page 121265
container_title Renewable energy
container_volume 234
creator Li, Tenghui
Yang, Jin
Ioannou, Anastasia
description This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.
doi_str_mv 10.1016/j.renene.2024.121265
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_renene_2024_121265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124013338</els_id><sourcerecordid>S0960148124013338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhnNQsFb_gYf8gV0n-5XdiyD1o0LBi55DmkxKyjYps2lL_71bVjzKHIaX4XkZHsYeBOQCRPO4zQnDOHkBRZWLQhRNfcVm0DWQiaoVN-x2GLYAom5lNWP9i046s-SPGLiJIVHseXT85IPl6UBrH5AfgkXiMfSXsI-nMQyJdMLNmR-95hZxz3vUFHzYcD2ShD64SAZ3GNLf6Y5dO90PeP-75-z77fVrscxWn-8fi-dVZkoQKUOoi7rR0FjnoJJaIiBWCK41EktrOwm2lJ10tqi1BtO1beVQyjWgk43Fcs6qqddQHAZCp_bkd5rOSoC6WFJbNVlSF0tqsjRiTxOG429Hj6QG4zEYtJ7QJGWj_7_gB5wld5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</title><source>ScienceDirect Freedom Collection</source><creator>Li, Tenghui ; Yang, Jin ; Ioannou, Anastasia</creator><creatorcontrib>Li, Tenghui ; Yang, Jin ; Ioannou, Anastasia</creatorcontrib><description>This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2024.121265</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Deep learning ; Model predictive control ; Reinforcement learning ; Wind turbine control</subject><ispartof>Renewable energy, 2024-11, Vol.234, p.121265, Article 121265</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3</cites><orcidid>0000-0002-1026-8495 ; 0000-0001-8281-5358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Li, Tenghui</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Ioannou, Anastasia</creatorcontrib><title>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</title><title>Renewable energy</title><description>This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.</description><subject>Deep learning</subject><subject>Model predictive control</subject><subject>Reinforcement learning</subject><subject>Wind turbine control</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhnNQsFb_gYf8gV0n-5XdiyD1o0LBi55DmkxKyjYps2lL_71bVjzKHIaX4XkZHsYeBOQCRPO4zQnDOHkBRZWLQhRNfcVm0DWQiaoVN-x2GLYAom5lNWP9i046s-SPGLiJIVHseXT85IPl6UBrH5AfgkXiMfSXsI-nMQyJdMLNmR-95hZxz3vUFHzYcD2ShD64SAZ3GNLf6Y5dO90PeP-75-z77fVrscxWn-8fi-dVZkoQKUOoi7rR0FjnoJJaIiBWCK41EktrOwm2lJ10tqi1BtO1beVQyjWgk43Fcs6qqddQHAZCp_bkd5rOSoC6WFJbNVlSF0tqsjRiTxOG429Hj6QG4zEYtJ7QJGWj_7_gB5wld5Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Li, Tenghui</creator><creator>Yang, Jin</creator><creator>Ioannou, Anastasia</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1026-8495</orcidid><orcidid>https://orcid.org/0000-0001-8281-5358</orcidid></search><sort><creationdate>202411</creationdate><title>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</title><author>Li, Tenghui ; Yang, Jin ; Ioannou, Anastasia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Model predictive control</topic><topic>Reinforcement learning</topic><topic>Wind turbine control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tenghui</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Ioannou, Anastasia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tenghui</au><au>Yang, Jin</au><au>Ioannou, Anastasia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning</atitle><jtitle>Renewable energy</jtitle><date>2024-11</date><risdate>2024</risdate><volume>234</volume><spage>121265</spage><pages>121265-</pages><artnum>121265</artnum><issn>0960-1481</issn><abstract>This study proposes a data-driven wind turbine (WT) model predictive control (MPC) enhanced by a deep-learning (DL) radial basis function network (RBFN) and a reinforcement-learning (RL) deep Q-learning network (DQN). The RBFN provides comprehensive aerodynamic predictions, including thrust, torque, and power. Besides, the MPC linearization relies on the RBFN prediction to estimate force sensitivities. The DQN achieves an online power strategy (OPS) that solves the 2-degree-of-freedom (2-DOF) optimization of rotor speed and pitch angle, which can actively adjust power capture to meet different power requirements. The DQN adopts a novel bisection algorithm with a first-in-first-out (FIFO) queue for high-precision 2-DOF results. The MPC coordinates the permanent magnet synchronous generator (PMSG) and pitch servo, considering shaft rotation and tower movement. Compared with the maximum power point tracking (MPPT) and power reference point tracking (PRPT) based controls, the proposed RBFN-DQN-MPC reduces power fluctuation and ensures constant output. This study also compares the DQN with the categorical DQN (C51), which indicates that the DQN is more effective in the 2-DOF optimization. Hence, WTs enhanced by the DL-RL-MPC are intelligent and reliable for flexible wind generation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.121265</doi><orcidid>https://orcid.org/0000-0002-1026-8495</orcidid><orcidid>https://orcid.org/0000-0001-8281-5358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-11, Vol.234, p.121265, Article 121265
issn 0960-1481
language eng
recordid cdi_crossref_primary_10_1016_j_renene_2024_121265
source ScienceDirect Freedom Collection
subjects Deep learning
Model predictive control
Reinforcement learning
Wind turbine control
title Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20control%20of%20wind%20turbine%20under%20online%20power%20strategy%20via%20deep%20learning%20and%20reinforcement%20learning&rft.jtitle=Renewable%20energy&rft.au=Li,%20Tenghui&rft.date=2024-11&rft.volume=234&rft.spage=121265&rft.pages=121265-&rft.artnum=121265&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2024.121265&rft_dat=%3Celsevier_cross%3ES0960148124013338%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-e05256a06dff047a7e0ee4e0f8c7e3dd970d3797fd25aa0c9884fe77b0ef76de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true