Loading…
Effect of bile on growth and biofilm formation of non-typhoidal salmonella serovars isolated from seafood and poultry
Bacterial cells adopt various strategies to adapt themselves in diverse environmental conditions. Salmonella is one such bacteria with diverse mechanisms to survive, replicate and infect in wide host range. This study aims at investigating the biofilm-forming ability of multidrug-resistant and sensi...
Saved in:
Published in: | Research in microbiology 2020-07, Vol.171 (5-6), p.165-173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacterial cells adopt various strategies to adapt themselves in diverse environmental conditions. Salmonella is one such bacteria with diverse mechanisms to survive, replicate and infect in wide host range. This study aims at investigating the biofilm-forming ability of multidrug-resistant and sensitive Salmonella serovars on exposure to bile. Antibiogram of all the isolates was determined by disk diffusion method and their biofilm-forming ability in the presence or absence of bile was assessed by microtiter plate assay. Biofilm results were validated by calcofluor, Congo red plate and test tube method. Few isolates were selected for further study of their expression of biofilm related genes on exposure to bile using real time PCR. Among the 59 isolates of Salmonella isolated from seafood and poultry, 30 isolates were multi-drug resistant (MDR). Under control conditions, 57% (n = 25) of the serovars were able to form biofilm. While, 86% (n = 51) of the serovars produced biofilm in the presence of bile. The relative gene expression study of the selected serovars for 8 different genes showed a striking difference in the expression levels, supporting the hypothesis that the presence of bile triggers biofilm formation in food associated strains of non-typhoidal Salmonella by upregulation of genes involved in biofilm production. |
---|---|
ISSN: | 0923-2508 1769-7123 |
DOI: | 10.1016/j.resmic.2020.06.002 |